You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

515 lines
18 KiB

import math
import os
import tempfile
import uuid
from typing import Tuple, List, Any
import aiohttp
import discord
# An enum of two modes, TOP_P or TEMPERATURE
import requests
from PIL import Image
from discord import File
class Mode:
TOP_P = "top_p"
TEMPERATURE = "temperature"
class Models:
DAVINCI = "text-davinci-003"
CURIE = "text-curie-001"
class ImageSize:
LARGE = "1024x1024"
MEDIUM = "512x512"
SMALL = "256x256"
class Model:
def __init__(self, usage_service):
self._mode = Mode.TEMPERATURE
self._temp = 0.6 # Higher value means more random, lower value means more likely to be a coherent sentence
self._top_p = 0.9 # 1 is equivalent to greedy sampling, 0.1 means that the model will only consider the top 10% of the probability distribution
self._max_tokens = 4000 # The maximum number of tokens the model can generate
self._presence_penalty = (
0 # Penalize new tokens based on whether they appear in the text so far
)
self._frequency_penalty = 0 # Penalize new tokens based on their existing frequency in the text so far. (Higher frequency = lower probability of being chosen.)
self._best_of = 1 # Number of responses to compare the loglikelihoods of
self._prompt_min_length = 12
self._max_conversation_length = 100
self._model = Models.DAVINCI
self._low_usage_mode = False
self.usage_service = usage_service
self.DAVINCI_ROLES = ["admin", "Admin", "GPT", "gpt"]
self._image_size = ImageSize.MEDIUM
self._num_images = 2
self._summarize_conversations = True
self._summarize_threshold = 2500
self.model_max_tokens = 4024
try:
self.IMAGE_SAVE_PATH = os.environ["IMAGE_SAVE_PATH"]
self.custom_image_path = True
except:
self.IMAGE_SAVE_PATH = "dalleimages"
# Try to make this folder called images/ in the local directory if it doesnt exist
if not os.path.exists(self.IMAGE_SAVE_PATH):
os.makedirs(self.IMAGE_SAVE_PATH)
self.custom_image_path = False
self._hidden_attributes = [
"usage_service",
"DAVINCI_ROLES",
"custom_image_path",
"custom_web_root",
"_hidden_attributes",
"model_max_tokens",
"openai_key",
]
self.openai_key = os.getenv("OPENAI_TOKEN")
# Use the @property and @setter decorators for all the self fields to provide value checking
@property
def summarize_threshold(self):
return self._summarize_threshold
@summarize_threshold.setter
def summarize_threshold(self, value):
value = int(value)
if value < 800 or value > 4000:
raise ValueError(
"Summarize threshold cannot be greater than 4000 or less than 800!"
)
self._summarize_threshold = value
@property
def summarize_conversations(self):
return self._summarize_conversations
@summarize_conversations.setter
def summarize_conversations(self, value):
# convert value string into boolean
if value.lower() == "true":
value = True
elif value.lower() == "false":
value = False
else:
raise ValueError("Value must be either true or false!")
self._summarize_conversations = value
@property
def image_size(self):
return self._image_size
@image_size.setter
def image_size(self, value):
if value in ImageSize.__dict__.values():
self._image_size = value
else:
raise ValueError(
"Image size must be one of the following: SMALL(256x256), MEDIUM(512x512), LARGE(1024x1024)"
)
@property
def num_images(self):
return self._num_images
@num_images.setter
def num_images(self, value):
value = int(value)
if value > 4 or value <= 0:
raise ValueError("num_images must be less than 4 and at least 1.")
self._num_images = value
@property
def low_usage_mode(self):
return self._low_usage_mode
@low_usage_mode.setter
def low_usage_mode(self, value):
# convert value string into boolean
if value.lower() == "true":
value = True
elif value.lower() == "false":
value = False
else:
raise ValueError("Value must be either true or false!")
if value:
self._model = Models.CURIE
self.max_tokens = 1900
self.model_max_tokens = 1000
else:
self._model = Models.DAVINCI
self.max_tokens = 4000
self.model_max_tokens = 4024
@property
def model(self):
return self._model
@model.setter
def model(self, model):
if model not in [Models.DAVINCI, Models.CURIE]:
raise ValueError(
"Invalid model, must be text-davinci-003 or text-curie-001"
)
self._model = model
@property
def max_conversation_length(self):
return self._max_conversation_length
@max_conversation_length.setter
def max_conversation_length(self, value):
value = int(value)
if value < 1:
raise ValueError("Max conversation length must be greater than 1")
if value > 30:
raise ValueError(
"Max conversation length must be less than 30, this will start using credits quick."
)
self._max_conversation_length = value
@property
def mode(self):
return self._mode
@mode.setter
def mode(self, value):
if value not in [Mode.TOP_P, Mode.TEMPERATURE]:
raise ValueError("mode must be either 'top_p' or 'temperature'")
if value == Mode.TOP_P:
self._top_p = 0.1
self._temp = 0.7
elif value == Mode.TEMPERATURE:
self._top_p = 0.9
self._temp = 0.6
self._mode = value
@property
def temp(self):
return self._temp
@temp.setter
def temp(self, value):
value = float(value)
if value < 0 or value > 1:
raise ValueError(
"temperature must be greater than 0 and less than 1, it is currently "
+ str(value)
)
self._temp = value
@property
def top_p(self):
return self._top_p
@top_p.setter
def top_p(self, value):
value = float(value)
if value < 0 or value > 1:
raise ValueError(
"top_p must be greater than 0 and less than 1, it is currently "
+ str(value)
)
self._top_p = value
@property
def max_tokens(self):
return self._max_tokens
@max_tokens.setter
def max_tokens(self, value):
value = int(value)
if value < 15 or value > 4096:
raise ValueError(
"max_tokens must be greater than 15 and less than 4096, it is currently "
+ str(value)
)
self._max_tokens = value
@property
def presence_penalty(self):
return self._presence_penalty
@presence_penalty.setter
def presence_penalty(self, value):
if int(value) < 0:
raise ValueError(
"presence_penalty must be greater than 0, it is currently " + str(value)
)
self._presence_penalty = value
@property
def frequency_penalty(self):
return self._frequency_penalty
@frequency_penalty.setter
def frequency_penalty(self, value):
if int(value) < 0:
raise ValueError(
"frequency_penalty must be greater than 0, it is currently "
+ str(value)
)
self._frequency_penalty = value
@property
def best_of(self):
return self._best_of
@best_of.setter
def best_of(self, value):
value = int(value)
if value < 1 or value > 3:
raise ValueError(
"best_of must be greater than 0 and ideally less than 3 to save tokens, it is currently "
+ str(value)
)
self._best_of = value
@property
def prompt_min_length(self):
return self._prompt_min_length
@prompt_min_length.setter
def prompt_min_length(self, value):
value = int(value)
if value < 10 or value > 4096:
raise ValueError(
"prompt_min_length must be greater than 10 and less than 4096, it is currently "
+ str(value)
)
self._prompt_min_length = value
async def send_summary_request(self, prompt):
"""
Sends a summary request to the OpenAI API
"""
summary_request_text = []
summary_request_text.append(
"The following is a conversation instruction set and a conversation"
2 years ago
" between two people, a Human, and GPTie. Firstly, determine the Human's name from the conversation history, then summarize the conversation. Do not summarize the instructions for GPTie, only the conversation. Summarize the conversation in a detailed fashion. If Human mentioned their name, be sure to mention it in the summary. Pay close attention to things the Human has told you, such as personal details."
)
summary_request_text.append(prompt + "\nDetailed summary of conversation: \n")
summary_request_text = "".join(summary_request_text)
tokens = self.usage_service.count_tokens(summary_request_text)
print("The summary request will use " + str(tokens) + " tokens.")
print(f"{self.max_tokens - tokens} is the remaining that we will use.")
async with aiohttp.ClientSession() as session:
payload = {
"model": Models.DAVINCI,
"prompt": summary_request_text,
"temperature": 0.5,
"top_p": 1,
"max_tokens": self.max_tokens - tokens,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
"best_of": self.best_of,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.openai_key}",
}
async with session.post(
"https://api.openai.com/v1/completions", json=payload, headers=headers
) as resp:
response = await resp.json()
print(response["choices"][0]["text"])
tokens_used = int(response["usage"]["total_tokens"])
self.usage_service.update_usage(tokens_used)
return response
async def send_request(
self,
prompt,
2 years ago
tokens,
temp_override=None,
top_p_override=None,
best_of_override=None,
frequency_penalty_override=None,
presence_penalty_override=None,
max_tokens_override=None,
) -> (
dict,
bool,
): # The response, and a boolean indicating whether or not the context limit was reached.
# Validate that all the parameters are in a good state before we send the request
if len(prompt) < self.prompt_min_length:
raise ValueError(
"Prompt must be greater than 12 characters, it is currently "
+ str(len(prompt))
)
print("The prompt about to be sent is " + prompt)
async with aiohttp.ClientSession() as session:
payload = {
"model": self.model,
"prompt": prompt,
"temperature": self.temp if not temp_override else temp_override,
"top_p": self.top_p if not top_p_override else top_p_override,
"max_tokens": self.max_tokens - tokens
if not max_tokens_override
else max_tokens_override,
"presence_penalty": self.presence_penalty
if not presence_penalty_override
else presence_penalty_override,
"frequency_penalty": self.frequency_penalty
if not frequency_penalty_override
else frequency_penalty_override,
"best_of": self.best_of if not best_of_override else best_of_override,
}
headers = {"Authorization": f"Bearer {self.openai_key}"}
async with session.post(
"https://api.openai.com/v1/completions", json=payload, headers=headers
) as resp:
response = await resp.json()
print(response)
# Parse the total tokens used for this request and response pair from the response
tokens_used = int(response["usage"]["total_tokens"])
self.usage_service.update_usage(tokens_used)
return response
async def send_image_request(self, prompt, vary=None) -> tuple[File, list[Any]]:
# Validate that all the parameters are in a good state before we send the request
words = len(prompt.split(" "))
if words < 3 or words > 75:
raise ValueError(
"Prompt must be greater than 3 words and less than 75, it is currently "
+ str(words)
)
# print("The prompt about to be sent is " + prompt)
self.usage_service.update_usage_image(self.image_size)
response = None
if not vary:
payload = {"prompt": prompt, "n": self.num_images, "size": self.image_size}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.openai_key}",
}
async with aiohttp.ClientSession() as session:
async with session.post(
"https://api.openai.com/v1/images/generations",
json=payload,
headers=headers,
) as resp:
response = await resp.json()
else:
async with aiohttp.ClientSession() as session:
data = aiohttp.FormData()
data.add_field("n", str(self.num_images))
data.add_field("size", self.image_size)
with open(vary, "rb") as f:
data.add_field(
"image", f, filename="file.png", content_type="image/png"
)
async with session.post(
"https://api.openai.com/v1/images/variations",
headers={
"Authorization": "Bearer " + self.openai_key,
},
data=data,
) as resp:
response = await resp.json()
print(response)
image_urls = []
for result in response["data"]:
image_urls.append(result["url"])
# For each image url, open it as an image object using PIL
images = [Image.open(requests.get(url, stream=True).raw) for url in image_urls]
# Save all the images with a random name to self.IMAGE_SAVE_PATH
image_names = [f"{uuid.uuid4()}.png" for _ in range(len(images))]
for image, name in zip(images, image_names):
image.save(f"{self.IMAGE_SAVE_PATH}/{name}")
# Update image_urls to include the local path to these new images
image_urls = [f"{self.IMAGE_SAVE_PATH}/{name}" for name in image_names]
widths, heights = zip(*(i.size for i in images))
# Calculate the number of rows and columns needed for the grid
num_rows = num_cols = int(math.ceil(math.sqrt(len(images))))
# If there are only 2 images, set the number of rows to 1
if len(images) == 2:
num_rows = 1
# Calculate the size of the combined image
width = max(widths) * num_cols
height = max(heights) * num_rows
# Create a transparent image with the same size as the images
transparent = Image.new("RGBA", (max(widths), max(heights)))
# Create a new image with the calculated size
new_im = Image.new("RGBA", (width, height))
# Paste the images and transparent segments into the grid
x_offset = y_offset = 0
for im in images:
new_im.paste(im, (x_offset, y_offset))
x_offset += im.size[0]
if x_offset >= width:
x_offset = 0
y_offset += im.size[1]
# Fill the remaining cells with transparent segments
while y_offset < height:
while x_offset < width:
new_im.paste(transparent, (x_offset, y_offset))
x_offset += transparent.size[0]
x_offset = 0
y_offset += transparent.size[1]
# Save the new_im to a temporary file and return it as a discord.File
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
new_im.save(temp_file.name)
# Print the filesize of new_im, in mega bytes
image_size = os.path.getsize(temp_file.name) / 1000000
# If the image size is greater than 8MB, we can't return this to the user, so we will need to downscale the
# image and try again
safety_counter = 0
2 years ago
while image_size > 8:
safety_counter += 1
2 years ago
if safety_counter >= 2:
break
print(
f"Image size is {image_size}MB, which is too large for discord. Downscaling and trying again"
)
new_im = new_im.resize(
(int(new_im.width / 1.05), int(new_im.height / 1.05))
)
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
new_im.save(temp_file.name)
image_size = os.path.getsize(temp_file.name) / 1000000
print(f"New image size is {image_size}MB")
return (discord.File(temp_file.name), image_urls)