|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
from transformers import GPT2TokenizerFast
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class UsageService:
|
|
|
|
|
def __init__(self):
|
|
|
|
|
# If the usage.txt file doesn't currently exist in the directory, create it and write 0.00 to it.
|
|
|
|
|
if not os.path.exists("usage.txt"):
|
|
|
|
|
with open("usage.txt", "w") as f:
|
|
|
|
|
f.write("0.00")
|
|
|
|
|
f.close()
|
|
|
|
|
self.tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
|
|
|
|
|
|
|
|
|
|
def update_usage(self, tokens_used):
|
|
|
|
|
tokens_used = int(tokens_used)
|
|
|
|
|
price = (tokens_used / 1000) * 0.02
|
|
|
|
|
print("This request cost " + str(price) + " credits")
|
|
|
|
|
usage = self.get_usage()
|
|
|
|
|
print("The current usage is " + str(usage) + " credits")
|
|
|
|
|
with open("usage.txt", "w") as f:
|
|
|
|
|
f.write(str(usage + float(price)))
|
|
|
|
|
f.close()
|
|
|
|
|
|
|
|
|
|
def set_usage(self, usage):
|
|
|
|
|
with open("usage.txt", "w") as f:
|
|
|
|
|
f.write(str(usage))
|
|
|
|
|
f.close()
|
|
|
|
|
|
|
|
|
|
def get_usage(self):
|
|
|
|
|
with open("usage.txt", "r") as f:
|
|
|
|
|
usage = float(f.read().strip())
|
|
|
|
|
f.close()
|
|
|
|
|
return usage
|
|
|
|
|
|
|
|
|
|
def count_tokens(self, input):
|
|
|
|
|
res = self.tokenizer(input)["input_ids"]
|
|
|
|
|
return len(res)
|
|
|
|
|
|
|
|
|
|
def update_usage_image(self, image_size):
|
|
|
|
|
# 1024×1024 $0.020 / image
|
|
|
|
|
# 512×512 $0.018 / image
|
|
|
|
|
# 256×256 $0.016 / image
|
|
|
|
|
|
|
|
|
|
if image_size == "1024x1024":
|
|
|
|
|
price = 0.02
|
|
|
|
|
elif image_size == "512x512":
|
|
|
|
|
price = 0.018
|
|
|
|
|
elif image_size == "256x256":
|
|
|
|
|
price = 0.016
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError("Invalid image size")
|
|
|
|
|
|
|
|
|
|
usage = self.get_usage()
|
|
|
|
|
|
|
|
|
|
with open("usage.txt", "w") as f:
|
|
|
|
|
f.write(str(usage + float(price)))
|
|
|
|
|
f.close()
|