You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

119 lines
4.7 KiB

import asyncio
import os
2 years ago
import random
import re
import traceback
from functools import partial
2 years ago
from bs4 import BeautifulSoup
import aiohttp
from gpt_index import (
QuestionAnswerPrompt,
GPTSimpleVectorIndex,
BeautifulSoupWebReader,
Document,
PromptHelper,
LLMPredictor,
OpenAIEmbedding,
)
from gpt_index.readers.web import DEFAULT_WEBSITE_EXTRACTOR
from langchain import OpenAI
2 years ago
from services.environment_service import EnvService
from services.usage_service import UsageService
class Search:
def __init__(self, gpt_model, usage_service):
2 years ago
self.model = gpt_model
self.usage_service = usage_service
2 years ago
self.google_search_api_key = EnvService.get_google_search_api_key()
self.google_search_engine_id = EnvService.get_google_search_engine_id()
self.loop = asyncio.get_running_loop()
self.qaprompt = QuestionAnswerPrompt(
"You are formulating the response to a search query given the search prompt and the context. Context information is below. The text '<|endofstatement|>' is used to separate chat entries and make it easier for you to understand the context\n"
"---------------------\n"
"{context_str}"
"\n---------------------\n"
"Never say '<|endofstatement|>'\n"
"Given the context information and not prior knowledge, "
"answer the question, say that you were unable to answer the question if there is not sufficient context to formulate a decisive answer. The search query was: {query_str}\n"
)
self.openai_key = os.getenv("OPENAI_TOKEN")
def index_webpage(self, url) -> list[Document]:
documents = BeautifulSoupWebReader(
website_extractor=DEFAULT_WEBSITE_EXTRACTOR
).load_data(urls=[url])
return documents
2 years ago
async def get_links(self, query, search_scope=5):
2 years ago
"""Search the web for a query"""
async with aiohttp.ClientSession() as session:
async with session.get(
f"https://www.googleapis.com/customsearch/v1?key={self.google_search_api_key}&cx={self.google_search_engine_id}&q={query}"
) as response:
if response.status == 200:
data = await response.json()
# Return a list of the top 5 links
return [item["link"] for item in data["items"][:search_scope]]
2 years ago
else:
return "An error occurred while searching."
async def search(self, query, user_api_key, search_scope, nodes):
DEFAULT_SEARCH_NODES = 1
if not user_api_key:
os.environ["OPENAI_API_KEY"] = self.openai_key
else:
os.environ["OPENAI_API_KEY"] = user_api_key
2 years ago
# Get the links for the query
links = await self.get_links(query, search_scope=search_scope)
2 years ago
# For each link, crawl the page and get all the text that's not HTML garbage.
# Concatenate all the text for a given website into one string and save it into an array:
documents = []
2 years ago
for link in links:
2 years ago
# First, attempt a connection with a timeout of 3 seconds to the link, if the timeout occurs, don't
# continue to the document loading.
try:
async with aiohttp.ClientSession() as session:
async with session.get(link, timeout=3) as response:
pass # Only catch timeout errors, allow for redirects for now..
2 years ago
except:
traceback.print_exc()
continue
try:
document = await self.loop.run_in_executor(
None, partial(self.index_webpage, link)
)
[documents.append(doc) for doc in document]
except Exception as e:
traceback.print_exc()
prompthelper = PromptHelper(4096, 1024, 20)
embedding_model = OpenAIEmbedding()
index = GPTSimpleVectorIndex(documents, embed_model=embedding_model)
await self.usage_service.update_usage(embedding_model.last_token_usage)
2 years ago
llm_predictor = LLMPredictor(llm=OpenAI(model_name="text-davinci-003"))
# Now we can search the index for a query:
embedding_model.last_token_usage = 0
response = index.query(
query,
2 years ago
verbose=True,
embed_model=embedding_model,
llm_predictor=llm_predictor,
prompt_helper=prompthelper,
similarity_top_k=nodes or DEFAULT_SEARCH_NODES,
text_qa_template=self.qaprompt,
)
await self.usage_service.update_usage(llm_predictor.last_token_usage)
await self.usage_service.update_usage(
embedding_model.last_token_usage, embeddings=True
)
2 years ago
return response