You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

217 lines
8.9 KiB

import asyncio
import os
2 years ago
import random
import re
import tempfile
import traceback
from functools import partial
import discord
2 years ago
from bs4 import BeautifulSoup
import aiohttp
from gpt_index import (
QuestionAnswerPrompt,
GPTSimpleVectorIndex,
BeautifulSoupWebReader,
Document,
PromptHelper,
LLMPredictor,
OpenAIEmbedding,
SimpleDirectoryReader,
)
from gpt_index.readers.web import DEFAULT_WEBSITE_EXTRACTOR
from langchain import OpenAI
2 years ago
from services.environment_service import EnvService, app_root_path
2 years ago
from services.usage_service import UsageService
class Search:
def __init__(self, gpt_model, usage_service):
2 years ago
self.model = gpt_model
self.usage_service = usage_service
2 years ago
self.google_search_api_key = EnvService.get_google_search_api_key()
self.google_search_engine_id = EnvService.get_google_search_engine_id()
self.loop = asyncio.get_running_loop()
self.qaprompt = QuestionAnswerPrompt(
"You are formulating the response to a search query given the search prompt and the context. Context information is below. The text '<|endofstatement|>' is used to separate chat entries and make it easier for you to understand the context\n"
"---------------------\n"
"{context_str}"
"\n---------------------\n"
"Never say '<|endofstatement|>'\n"
"Given the context information and not prior knowledge, "
"answer the question, say that you were unable to answer the question if there is not sufficient context to formulate a decisive answer. The search query was: {query_str}\n"
)
self.openai_key = os.getenv("OPENAI_TOKEN")
self.EMBED_CUTOFF = 2000
def index_webpage(self, url) -> list[Document]:
documents = BeautifulSoupWebReader(
website_extractor=DEFAULT_WEBSITE_EXTRACTOR
).load_data(urls=[url])
return documents
2 years ago
async def index_pdf(self, url) -> list[Document]:
# Download the PDF at the url and save it to a tempfile
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
if response.status == 200:
data = await response.read()
f = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False)
f.write(data)
f.close()
else:
return "An error occurred while downloading the PDF."
# Get the file path of this tempfile.NamedTemporaryFile
# Save this temp file to an actual file that we can put into something else to read it
documents = SimpleDirectoryReader(input_files=[f.name]).load_data()
print("Loaded the PDF document data")
# Delete the temporary file
return documents
2 years ago
async def get_links(self, query, search_scope=2):
2 years ago
"""Search the web for a query"""
async with aiohttp.ClientSession() as session:
async with session.get(
f"https://www.googleapis.com/customsearch/v1?key={self.google_search_api_key}&cx={self.google_search_engine_id}&q={query}"
) as response:
if response.status == 200:
data = await response.json()
2 years ago
# Return a list of the top 2 links
return (
[item["link"] for item in data["items"][:search_scope]],
[item["link"] for item in data["items"]],
)
2 years ago
else:
print(
"The Google Search API returned an error: "
+ str(response.status)
)
return ["An error occurred while searching.", None]
2 years ago
async def search(self, query, user_api_key, search_scope, nodes):
DEFAULT_SEARCH_NODES = 1
if not user_api_key:
os.environ["OPENAI_API_KEY"] = self.openai_key
else:
os.environ["OPENAI_API_KEY"] = user_api_key
llm_predictor = LLMPredictor(llm=OpenAI(model_name="text-davinci-003"))
try:
llm_predictor_presearch = OpenAI(
max_tokens=30, temperature=0, model_name="text-davinci-003"
)
# Refine a query to send to google custom search API
query_refined = llm_predictor_presearch.generate(
prompts=[
"You are refining a query to send to the Google Custom Search API. Change the query such that putting it into the Google Custom Search API will return the most relevant websites to assist us in answering the original query. Respond with only the refined query for the original query. The original query is: "
+ query
+ "\nRefined Query:"
]
)
query_refined_text = query_refined.generations[0][0].text
except Exception as e:
traceback.print_exc()
query_refined_text = query
2 years ago
# Get the links for the query
links, all_links = await self.get_links(query, search_scope=search_scope)
if all_links is None:
raise ValueError("The Google Search API returned an error.")
2 years ago
# For each link, crawl the page and get all the text that's not HTML garbage.
# Concatenate all the text for a given website into one string and save it into an array:
documents = []
2 years ago
for link in links:
2 years ago
# First, attempt a connection with a timeout of 3 seconds to the link, if the timeout occurs, don't
# continue to the document loading.
pdf = False
2 years ago
try:
async with aiohttp.ClientSession() as session:
async with session.get(link, timeout=2) as response:
# Add another entry to links from all_links if the link is not already in it to compensate for the failed request
if response.status not in [200, 203, 202, 204]:
for link2 in all_links:
if link2 not in links:
print("Found a replacement link")
links.append(link2)
break
continue
# Follow redirects
elif response.status in [301, 302, 303, 307, 308]:
try:
print("Adding redirect")
links.append(response.url)
continue
except:
continue
else:
# Detect if the link is a PDF, if it is, we load it differently
if response.headers["Content-Type"] == "application/pdf":
print("Found a PDF at the link " + link)
pdf = True
2 years ago
except:
traceback.print_exc()
try:
# Try to add a link from all_links, this is kind of messy.
for link2 in all_links:
if link2 not in links:
print("Found a replacement link")
links.append(link2)
break
except:
pass
2 years ago
continue
try:
if not pdf:
document = await self.loop.run_in_executor(
None, partial(self.index_webpage, link)
)
else:
document = await self.index_pdf(link)
[documents.append(doc) for doc in document]
except Exception as e:
traceback.print_exc()
embedding_model = OpenAIEmbedding()
2 years ago
index = await self.loop.run_in_executor(
None, partial(GPTSimpleVectorIndex, documents, embed_model=embedding_model)
)
2 years ago
await self.usage_service.update_usage(
embedding_model.last_token_usage, embeddings=True
)
2 years ago
llm_predictor = LLMPredictor(
llm=OpenAI(model_name="text-davinci-003", max_tokens=-1)
)
2 years ago
# Now we can search the index for a query:
embedding_model.last_token_usage = 0
2 years ago
response = await self.loop.run_in_executor(
None,
partial(
index.query,
query,
verbose=True,
embed_model=embedding_model,
llm_predictor=llm_predictor,
similarity_top_k=nodes or DEFAULT_SEARCH_NODES,
text_qa_template=self.qaprompt,
),
)
2 years ago
await self.usage_service.update_usage(llm_predictor.last_token_usage)
await self.usage_service.update_usage(
embedding_model.last_token_usage, embeddings=True
)
2 years ago
return response