import pinecone class PineconeService: def __init__(self, index: pinecone.Index): self.index = index def upsert_basic(self, text, embeddings): self.index.upsert([(text, embeddings)]) def get_all_for_conversation(self, conversation_id: int): response = self.index.query( top_k=100, filter={"conversation_id": conversation_id} ) return response async def upsert_conversation_embedding( self, model, conversation_id: int, text, timestamp ): # If the text is > 512 characters, we need to split it up into multiple entries. first_embedding = None if len(text) > 500: # Split the text into 512 character chunks chunks = [text[i : i + 500] for i in range(0, len(text), 500)] for chunk in chunks: print("The split chunk is ", chunk) # Create an embedding for the split chunk embedding = await model.send_embedding_request(chunk) if not first_embedding: first_embedding = embedding self.index.upsert( [(chunk, embedding)], metadata={ "conversation_id": conversation_id, "timestamp": timestamp, }, ) return first_embedding else: embedding = await model.send_embedding_request(text) self.index.upsert( [ ( text, embedding, {"conversation_id": conversation_id, "timestamp": timestamp}, ) ] ) return embedding def get_n_similar(self, conversation_id: int, embedding, n=10): response = self.index.query( vector=embedding, top_k=n, include_metadata=True, filter={"conversation_id": conversation_id}, ) print(response) relevant_phrases = [ (match["id"], match["metadata"]["timestamp"]) for match in response["matches"] ] # Sort the relevant phrases based on the timestamp relevant_phrases.sort(key=lambda x: x[1]) return relevant_phrases