You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

72 lines
2.5 KiB

import pinecone
class PineconeService:
def __init__(self, index: pinecone.Index):
self.index = index
def upsert_basic(self, text, embeddings):
self.index.upsert([(text, embeddings)])
def get_all_for_conversation(self, conversation_id: int):
response = self.index.query(
top_k=100, filter={"conversation_id": conversation_id}
)
return response
async def upsert_conversation_embedding(
self, model, conversation_id: int, text, timestamp, custom_api_key=None
):
# If the text is > 512 characters, we need to split it up into multiple entries.
first_embedding = None
if len(text) > 500:
# Split the text into 512 character chunks
chunks = [text[i : i + 500] for i in range(0, len(text), 500)]
for chunk in chunks:
print("The split chunk is ", chunk)
# Create an embedding for the split chunk
embedding = await model.send_embedding_request(
chunk, custom_api_key=custom_api_key
)
if not first_embedding:
first_embedding = embedding
self.index.upsert(
[(chunk, embedding)],
metadata={
"conversation_id": conversation_id,
"timestamp": timestamp,
},
)
return first_embedding
else:
embedding = await model.send_embedding_request(
text, custom_api_key=custom_api_key
)
self.index.upsert(
[
(
text,
embedding,
{"conversation_id": conversation_id, "timestamp": timestamp},
)
]
)
return embedding
def get_n_similar(self, conversation_id: int, embedding, n=10):
response = self.index.query(
vector=embedding,
top_k=n,
include_metadata=True,
filter={"conversation_id": conversation_id},
)
print(response)
relevant_phrases = [
(match["id"], match["metadata"]["timestamp"])
for match in response["matches"]
]
# Sort the relevant phrases based on the timestamp
relevant_phrases.sort(key=lambda x: x[1])
return relevant_phrases