You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

365 lines
15 KiB

import time
import discord
import openai
from discord.ext import commands
from dotenv import load_dotenv
load_dotenv()
import os
class Mode:
TOP_P = "top_p"
TEMPERATURE = "temperature"
class Model:
# An enum of two modes, TOP_P or TEMPERATURE
def __init__(self, ):
self._mode = Mode.TEMPERATURE
self._temp = 0.7 # Higher value means more random, lower value means more likely to be a coherent sentence
self._top_p = 1 # 1 is equivalent to greedy sampling, 0.1 means that the model will only consider the top 10% of the probability distribution
self._max_tokens = 2000 # The maximum number of tokens the model can generate
self._presence_penalty = 0 # Penalize new tokens based on whether they appear in the text so far
self._frequency_penalty = 0 # Penalize new tokens based on their existing frequency in the text so far. (Higher frequency = lower probability of being chosen.)
self._best_of = 1 # Number of responses to compare the loglikelihoods of
self._prompt_min_length = 25
self._max_conversation_length = 5
openai.api_key = os.getenv('OPENAI_TOKEN')
# Use the @property and @setter decorators for all the self fields to provide value checking
@property
def max_conversation_length(self):
return self._max_conversation_length
@max_conversation_length.setter
def max_conversation_length(self, value):
if value < 1:
raise ValueError("Max conversation length must be greater than 1")
if value > 20:
raise ValueError("Max conversation length must be less than 20, this will start using credits quick.")
self._max_conversation_length = value
@property
def mode(self):
return self._mode
@mode.setter
def mode(self, value):
if value not in [Mode.TOP_P, Mode.TEMPERATURE]:
raise ValueError("mode must be either 'top_p' or 'temperature'")
if value == Mode.TOP_P:
self._top_p = 0.1
self._temp = 0.7
elif value == Mode.TEMPERATURE:
self._top_p = 0.9
self._temp = 0.6
self._mode = value
@property
def temp(self):
return self._temp
@temp.setter
def temp(self, value):
value = float(value)
if value < 0 or value > 1:
raise ValueError("temperature must be greater than 0 and less than 1, it is currently " + str(value))
self._temp = value
@property
def top_p(self):
return self._top_p
@top_p.setter
def top_p(self, value):
value = float(value)
if value < 0 or value > 1:
raise ValueError("top_p must be greater than 0 and less than 1, it is currently " + str(value))
self._top_p = value
@property
def max_tokens(self):
return self._max_tokens
@max_tokens.setter
def max_tokens(self, value):
value = int(value)
if value < 15 or value > 4096:
raise ValueError("max_tokens must be greater than 15 and less than 4096, it is currently " + str(value))
self._max_tokens = value
@property
def presence_penalty(self):
return self._presence_penalty
@presence_penalty.setter
def presence_penalty(self, value):
if int(value) < 0:
raise ValueError("presence_penalty must be greater than 0, it is currently " + str(value))
self._presence_penalty = value
@property
def frequency_penalty(self):
return self._frequency_penalty
@frequency_penalty.setter
def frequency_penalty(self, value):
if int(value) < 0:
raise ValueError("frequency_penalty must be greater than 0, it is currently " + str(value))
self._frequency_penalty = value
@property
def best_of(self):
return self._best_of
@best_of.setter
def best_of(self, value):
value = int(value)
if value < 1 or value > 3:
raise ValueError(
"best_of must be greater than 0 and ideally less than 3 to save tokens, it is currently " + str(value))
self._best_of = value
@property
def prompt_min_length(self):
return self._prompt_min_length
@prompt_min_length.setter
def prompt_min_length(self, value):
value = int(value)
if value < 10 or value > 4096:
raise ValueError(
"prompt_min_length must be greater than 10 and less than 4096, it is currently " + str(value))
self._prompt_min_length = value
def send_request(self, prompt):
# Validate that all the parameters are in a good state before we send the request
if len(prompt) < self.prompt_min_length:
raise ValueError("Prompt must be greater than 25 characters, it is currently " + str(len(prompt)))
print("The prompt about to be sent is " + prompt)
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=self.temp,
top_p=self.top_p,
max_tokens=self.max_tokens,
presence_penalty=self.presence_penalty,
frequency_penalty=self.frequency_penalty,
best_of=self.best_of,
)
print(response.__dict__)
return response
bot = commands.Bot(command_prefix="gpt3 ")
model = Model()
last_used = {}
GLOBAL_COOLDOWN_TIME = 5 # In seconds
conversating_users = {}
class User:
def __init__(self, id):
self.id = id
self.history = ""
self.count = 0
# These user objects should be accessible by ID, for example if we had a bunch of user
# objects in a list, and we did `if 1203910293001 in user_list`, it would return True
# if the user with that ID was in the list
def __eq__(self, other):
return self.id == other.id
def __hash__(self):
return hash(self.id)
def __repr__(self):
return f"User(id={self.id}, history={self.history})"
def __str__(self):
return self.__repr__()
class DiscordBot:
def __init__(self, bot):
self.bot = bot
bot.run(os.getenv('DISCORD_TOKEN'))
self.last_used = {}
@staticmethod
@bot.event # Using self gives u
async def on_ready(): # I can make self optional by
print('We have logged in as {0.user}'.format(bot))
@staticmethod
@bot.event
async def on_message(message):
if message.author == bot.user:
return
# Only allow the bot to be used by people who have the role "Admin" or "GPT"
if not any(role.name in ["admin", "Admin", "GPT", "gpt"] for role in message.author.roles):
return
if not message.content.startswith('!g'):
return
# Implement a global 20 second timer for using the bot:
# If the user has used the bot in the last 20 seconds, don't let them use it again
# We can implement that lie this:
if message.author.id in last_used:
if time.time() - last_used[message.author.id] < GLOBAL_COOLDOWN_TIME:
# Tell the user the remaining global cooldown time, respond to the user's original message as a "reply"
await message.reply("You must wait " + str(round(GLOBAL_COOLDOWN_TIME - (
time.time() - last_used[message.author.id]))) + " seconds before using the bot again")
return
last_used[message.author.id] = time.time()
# Print settings command
if message.content == "!g":
# create a discord embed with help text
embed = discord.Embed(title="GPT3Bot Help", description="The current commands", color=0x00ff00)
embed.add_field(name="!g <prompt>",
value="Ask GPT3 something. Be clear, long, and concise in your prompt. Don't waste tokens.",
inline=False)
embed.add_field(name="!g converse",
value="Start a conversation with GPT3",
inline=False)
embed.add_field(name="!g end",
value="End a conversation with GPT3",
inline=False)
embed.add_field(name="!gp", value="Print the current settings of the model", inline=False)
embed.add_field(name="!gs <model parameter> <value>",
value="Change the parameter of the model named by <model parameter> to new value <value>",
inline=False)
embed.add_field(name="!g", value="See this help text", inline=False)
await message.channel.send(embed=embed)
elif message.content.startswith('!gp'):
embed = discord.Embed(title="GPT3Bot Settings", description="The current settings of the model",
color=0x00ff00)
for key, value in model.__dict__.items():
embed.add_field(name=key, value=value, inline=False)
await message.reply(embed=embed)
elif message.content.startswith('!gs'):
# Extract the parameter and the value
parameter = message.content[4:].split()[0]
value = message.content[4:].split()[1]
# Check if the parameter is a valid parameter
if hasattr(model, parameter):
# Check if the value is a valid value
try:
# Set the parameter to the value
setattr(model, parameter, value)
await message.reply("Successfully set the parameter " + parameter + " to " + value)
if parameter == "mode":
await message.reply(
"The mode has been set to " + value + ". This has changed the temperature top_p to the mode defaults of " + str(
model.temp) + " and " + str(model.top_p))
except ValueError as e:
await message.reply(e)
else:
await message.reply("The parameter is not a valid parameter")
# GPT3 command
elif message.content.startswith('!g'):
# Extract all the text after the !g and use it as the prompt.
prompt = message.content[2:]
# Remove the extra space on the left
prompt = prompt.lstrip()
# If the prompt is just "converse", start a conversation with GPT3
if prompt == "converse":
# If the user is already conversating, don't let them start another conversation
if message.author.id in conversating_users:
await message.reply("You are already conversating with GPT3. End the conversation with !g end")
return
# If the user is not already conversating, start a conversation with GPT3
conversating_users[message.author.id] = User(message.author.id)
# Append the starter text for gpt3 to the user's history so it gets concatenated with the prompt later
conversating_users[message.author.id].history += "You are an artificial intelligence that is able to do anything, and answer any question, I want you to be my personal assisstant and help me with some tasks."
await message.reply("You are now conversing with GPT3. End the conversation with !g end")
return
# If the prompt is just "end", end the conversation with GPT3
if prompt == "end":
# If the user is not conversating, don't let them end the conversation
if message.author.id not in conversating_users:
await message.reply("You are not conversing with GPT3. Start a conversation with !g converse")
return
# If the user is conversating, end the conversation
conversating_users.pop(message.author.id)
await message.reply("You have ended the conversation with GPT3. Start a conversation with !g converse")
return
# We want to have conversationality functionality. To have gpt3 remember context, we need to append the conversation/prompt
# history to the prompt. We can do this by checking if the user is in the conversating_users dictionary, and if they are,
# we can append their history to the prompt.
if message.author.id in conversating_users:
prompt = conversating_users[message.author.id].history + "\nHuman: " + prompt + "\nAI:"
# Now, add overwrite the user's history with the new prompt
conversating_users[message.author.id].history = prompt
# increment the conversation counter for the user
conversating_users[message.author.id].count += 1
# If the user has reached the max conversation length, end the conversation
if conversating_users[message.author.id].count >= model.max_conversation_length:
conversating_users.pop(message.author.id)
await message.reply("You have reached the maximum conversation length. You have ended the conversation with GPT3, and it has ended.")
return
# Send the request to the model
try:
response = model.send_request(prompt)
response_text = response["choices"][0]["text"]
print(response_text)
# If the user is conversating, we want to add the response to their history
if message.author.id in conversating_users:
conversating_users[message.author.id].history += response_text + "\n"
# If the response text is > 3500 characters, paginate and send
if len(response_text) > 1900:
# Split the response text into 3500 character chunks
response_text = [response_text[i:i + 1900] for i in range(0, len(response_text), 1900)]
# Send each chunk as a message
first = False
for chunk in response_text:
if not first:
await message.reply(chunk)
first = True
else:
await message.channel.send(chunk)
else:
await message.reply(response_text)
except ValueError as e:
await message.reply(e)
return
except Exception as e:
await message.reply("Something went wrong, please try again later")
await message.channel.send(e)
return
# Run the bot with a token taken from an environment file.
if __name__ == "__main__":
bot = DiscordBot(bot)