You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
GPT3Discord/models/moderations_service_model.py

139 lines
5.3 KiB

import asyncio
import os
import traceback
from datetime import datetime
from pathlib import Path
import discord
from models.openai_model import Model
from models.usage_service_model import UsageService
usage_service = UsageService(Path(os.environ.get("DATA_DIR", os.getcwd())))
model = Model(usage_service)
class Moderation:
def __init__(self, message, timestamp):
self.message = message
self.timestamp = timestamp
@staticmethod
def build_moderation_embed():
# Create a discord embed to send to the user when their message gets moderated
embed = discord.Embed(
title="Your message was moderated",
description="Our automatic moderation systems detected that your message was inappropriate and has been deleted. Please review the rules.",
colour=discord.Colour.red(),
)
# Set the embed thumbnail
embed.set_thumbnail(url="https://i.imgur.com/2oL8JSp.png")
embed.set_footer(
text="If you think this was a mistake, please contact the server admins."
)
return embed
@staticmethod
def build_admin_moderated_message(moderated_message, response_message):
# Create a discord embed to send to the user when their message gets moderated
embed = discord.Embed(
title="A message was moderated in the "
+ moderated_message.message.guild.name
+ " server",
description=f"Message from {moderated_message.message.author.mention} was moderated: {moderated_message.message.content}",
colour=discord.Colour.yellow(),
)
# Get the link to the moderated message
link = f"https://discord.com/channels/{response_message.guild.id}/{response_message.channel.id}/{response_message.id}"
# set the link of the embed
embed.add_field(name="Moderated message link", value=link, inline=False)
return embed
@staticmethod
def determine_moderation_result(response):
HATE_THRESHOLD = 0.005
HATE_VIOLENCE_THRESHOLD = 0.05
SELF_HARM_THRESHOLD = 0.05
SEXUAL_THRESHOLD = 0.75
SEXUAL_MINORS_THRESHOLD = 0.1
VIOLENCE_THRESHOLD = 0.01
VIOLENCE_GRAPHIC_THRESHOLD = 0.1
thresholds = [
HATE_THRESHOLD,
HATE_VIOLENCE_THRESHOLD,
SELF_HARM_THRESHOLD,
SEXUAL_THRESHOLD,
SEXUAL_MINORS_THRESHOLD,
VIOLENCE_THRESHOLD,
VIOLENCE_GRAPHIC_THRESHOLD,
]
threshold_iterator = [
"hate",
"hate/threatening",
"self-harm",
"sexual",
"sexual/minors",
"violence",
"violence/graphic",
]
category_scores = response["results"][0]["category_scores"]
flagged = response["results"][0]["flagged"]
# Iterate the category scores using the threshold_iterator and compare the values to thresholds
for category, threshold in zip(threshold_iterator, thresholds):
if category_scores[category] > threshold:
return True
return False
# This function will be called by the bot to process the message queue
@staticmethod
async def process_moderation_queue(
moderation_queue, PROCESS_WAIT_TIME, EMPTY_WAIT_TIME, moderations_alert_channel
):
while True:
try:
# If the queue is empty, sleep for a short time before checking again
if moderation_queue.empty():
await asyncio.sleep(EMPTY_WAIT_TIME)
continue
# Get the next message from the queue
to_moderate = await moderation_queue.get()
# Check if the current timestamp is greater than the deletion timestamp
if datetime.now().timestamp() > to_moderate.timestamp:
response = await model.send_moderations_request(
to_moderate.message.content
)
moderation_result = Moderation.determine_moderation_result(response)
if moderation_result:
# Take care of the flagged message
response_message = await to_moderate.message.reply(
embed=Moderation.build_moderation_embed()
)
# Do the same response as above but use an ephemeral message
await to_moderate.message.delete()
# Send to the moderation alert channel
if moderations_alert_channel:
await moderations_alert_channel.send(
embed=Moderation.build_admin_moderated_message(
to_moderate, response_message
)
)
else:
await moderation_queue.put(to_moderate)
# Sleep for a short time before processing the next message
# This will prevent the bot from spamming messages too quickly
await asyncio.sleep(PROCESS_WAIT_TIME)
except:
traceback.print_exc()
pass