You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
561 lines
20 KiB
561 lines
20 KiB
import asyncio
|
|
import functools
|
|
import math
|
|
import os
|
|
import tempfile
|
|
import uuid
|
|
from typing import Tuple, List, Any
|
|
|
|
import aiohttp
|
|
import discord
|
|
|
|
# An enum of two modes, TOP_P or TEMPERATURE
|
|
import requests
|
|
from PIL import Image
|
|
from discord import File
|
|
|
|
|
|
class Mode:
|
|
TOP_P = "top_p"
|
|
TEMPERATURE = "temperature"
|
|
|
|
|
|
class Models:
|
|
DAVINCI = "text-davinci-003"
|
|
CURIE = "text-curie-001"
|
|
|
|
|
|
class ImageSize:
|
|
LARGE = "1024x1024"
|
|
MEDIUM = "512x512"
|
|
SMALL = "256x256"
|
|
|
|
|
|
class Model:
|
|
def __init__(self, usage_service):
|
|
self._mode = Mode.TEMPERATURE
|
|
self._temp = 0.6 # Higher value means more random, lower value means more likely to be a coherent sentence
|
|
self._top_p = 0.9 # 1 is equivalent to greedy sampling, 0.1 means that the model will only consider the top 10% of the probability distribution
|
|
self._max_tokens = 4000 # The maximum number of tokens the model can generate
|
|
self._presence_penalty = (
|
|
0 # Penalize new tokens based on whether they appear in the text so far
|
|
)
|
|
self._frequency_penalty = 0 # Penalize new tokens based on their existing frequency in the text so far. (Higher frequency = lower probability of being chosen.)
|
|
self._best_of = 1 # Number of responses to compare the loglikelihoods of
|
|
self._prompt_min_length = 12
|
|
self._max_conversation_length = 100
|
|
self._model = Models.DAVINCI
|
|
self._low_usage_mode = False
|
|
self.usage_service = usage_service
|
|
self.DAVINCI_ROLES = ["admin", "Admin", "GPT", "gpt"]
|
|
self._image_size = ImageSize.MEDIUM
|
|
self._num_images = 2
|
|
self._summarize_conversations = True
|
|
self._summarize_threshold = 2500
|
|
self.model_max_tokens = 4024
|
|
self.send_welcome_message = False
|
|
|
|
try:
|
|
self.IMAGE_SAVE_PATH = os.environ["IMAGE_SAVE_PATH"]
|
|
self.custom_image_path = True
|
|
except:
|
|
self.IMAGE_SAVE_PATH = "dalleimages"
|
|
# Try to make this folder called images/ in the local directory if it doesnt exist
|
|
if not os.path.exists(self.IMAGE_SAVE_PATH):
|
|
os.makedirs(self.IMAGE_SAVE_PATH)
|
|
self.custom_image_path = False
|
|
|
|
self._hidden_attributes = [
|
|
"usage_service",
|
|
"DAVINCI_ROLES",
|
|
"custom_image_path",
|
|
"custom_web_root",
|
|
"_hidden_attributes",
|
|
"model_max_tokens",
|
|
"openai_key",
|
|
]
|
|
|
|
self.openai_key = os.getenv("OPENAI_TOKEN")
|
|
|
|
# Use the @property and @setter decorators for all the self fields to provide value checking
|
|
|
|
@property
|
|
def welcome_message_enabled(self):
|
|
return self.send_welcome_message
|
|
|
|
@send_welcome_message.setter
|
|
def welcome_message_enabled(self, value):
|
|
if value.lower() == "true":
|
|
self.send_welcome_message = True
|
|
elif value.lower() == "false":
|
|
self.send_welcome_message = False
|
|
else:
|
|
raise ValueError("Value must be either true or false!")
|
|
|
|
|
|
@property
|
|
def summarize_threshold(self):
|
|
return self._summarize_threshold
|
|
|
|
@summarize_threshold.setter
|
|
def summarize_threshold(self, value):
|
|
value = int(value)
|
|
if value < 800 or value > 4000:
|
|
raise ValueError(
|
|
"Summarize threshold cannot be greater than 4000 or less than 800!"
|
|
)
|
|
self._summarize_threshold = value
|
|
|
|
@property
|
|
def summarize_conversations(self):
|
|
return self._summarize_conversations
|
|
|
|
@summarize_conversations.setter
|
|
def summarize_conversations(self, value):
|
|
# convert value string into boolean
|
|
if value.lower() == "true":
|
|
value = True
|
|
elif value.lower() == "false":
|
|
value = False
|
|
else:
|
|
raise ValueError("Value must be either true or false!")
|
|
self._summarize_conversations = value
|
|
|
|
@property
|
|
def image_size(self):
|
|
return self._image_size
|
|
|
|
@image_size.setter
|
|
def image_size(self, value):
|
|
if value in ImageSize.__dict__.values():
|
|
self._image_size = value
|
|
else:
|
|
raise ValueError(
|
|
"Image size must be one of the following: SMALL(256x256), MEDIUM(512x512), LARGE(1024x1024)"
|
|
)
|
|
|
|
@property
|
|
def num_images(self):
|
|
return self._num_images
|
|
|
|
@num_images.setter
|
|
def num_images(self, value):
|
|
value = int(value)
|
|
if value > 4 or value <= 0:
|
|
raise ValueError("num_images must be less than 4 and at least 1.")
|
|
self._num_images = value
|
|
|
|
@property
|
|
def low_usage_mode(self):
|
|
return self._low_usage_mode
|
|
|
|
@low_usage_mode.setter
|
|
def low_usage_mode(self, value):
|
|
# convert value string into boolean
|
|
if value.lower() == "true":
|
|
value = True
|
|
elif value.lower() == "false":
|
|
value = False
|
|
else:
|
|
raise ValueError("Value must be either true or false!")
|
|
|
|
if value:
|
|
self._model = Models.CURIE
|
|
self.max_tokens = 1900
|
|
self.model_max_tokens = 1000
|
|
else:
|
|
self._model = Models.DAVINCI
|
|
self.max_tokens = 4000
|
|
self.model_max_tokens = 4024
|
|
|
|
@property
|
|
def model(self):
|
|
return self._model
|
|
|
|
@model.setter
|
|
def model(self, model):
|
|
if model not in [Models.DAVINCI, Models.CURIE]:
|
|
raise ValueError(
|
|
"Invalid model, must be text-davinci-003 or text-curie-001"
|
|
)
|
|
self._model = model
|
|
|
|
@property
|
|
def max_conversation_length(self):
|
|
return self._max_conversation_length
|
|
|
|
@max_conversation_length.setter
|
|
def max_conversation_length(self, value):
|
|
value = int(value)
|
|
if value < 1:
|
|
raise ValueError("Max conversation length must be greater than 1")
|
|
if value > 30:
|
|
raise ValueError(
|
|
"Max conversation length must be less than 30, this will start using credits quick."
|
|
)
|
|
self._max_conversation_length = value
|
|
|
|
@property
|
|
def mode(self):
|
|
return self._mode
|
|
|
|
@mode.setter
|
|
def mode(self, value):
|
|
if value not in [Mode.TOP_P, Mode.TEMPERATURE]:
|
|
raise ValueError("mode must be either 'top_p' or 'temperature'")
|
|
if value == Mode.TOP_P:
|
|
self._top_p = 0.1
|
|
self._temp = 0.7
|
|
elif value == Mode.TEMPERATURE:
|
|
self._top_p = 0.9
|
|
self._temp = 0.6
|
|
|
|
self._mode = value
|
|
|
|
@property
|
|
def temp(self):
|
|
return self._temp
|
|
|
|
@temp.setter
|
|
def temp(self, value):
|
|
value = float(value)
|
|
if value < 0 or value > 1:
|
|
raise ValueError(
|
|
"temperature must be greater than 0 and less than 1, it is currently "
|
|
+ str(value)
|
|
)
|
|
|
|
self._temp = value
|
|
|
|
@property
|
|
def top_p(self):
|
|
return self._top_p
|
|
|
|
@top_p.setter
|
|
def top_p(self, value):
|
|
value = float(value)
|
|
if value < 0 or value > 1:
|
|
raise ValueError(
|
|
"top_p must be greater than 0 and less than 1, it is currently "
|
|
+ str(value)
|
|
)
|
|
self._top_p = value
|
|
|
|
@property
|
|
def max_tokens(self):
|
|
return self._max_tokens
|
|
|
|
@max_tokens.setter
|
|
def max_tokens(self, value):
|
|
value = int(value)
|
|
if value < 15 or value > 4096:
|
|
raise ValueError(
|
|
"max_tokens must be greater than 15 and less than 4096, it is currently "
|
|
+ str(value)
|
|
)
|
|
self._max_tokens = value
|
|
|
|
@property
|
|
def presence_penalty(self):
|
|
return self._presence_penalty
|
|
|
|
@presence_penalty.setter
|
|
def presence_penalty(self, value):
|
|
if int(value) < 0:
|
|
raise ValueError(
|
|
"presence_penalty must be greater than 0, it is currently " + str(value)
|
|
)
|
|
self._presence_penalty = value
|
|
|
|
@property
|
|
def frequency_penalty(self):
|
|
return self._frequency_penalty
|
|
|
|
@frequency_penalty.setter
|
|
def frequency_penalty(self, value):
|
|
if int(value) < 0:
|
|
raise ValueError(
|
|
"frequency_penalty must be greater than 0, it is currently "
|
|
+ str(value)
|
|
)
|
|
self._frequency_penalty = value
|
|
|
|
@property
|
|
def best_of(self):
|
|
return self._best_of
|
|
|
|
@best_of.setter
|
|
def best_of(self, value):
|
|
value = int(value)
|
|
if value < 1 or value > 3:
|
|
raise ValueError(
|
|
"best_of must be greater than 0 and ideally less than 3 to save tokens, it is currently "
|
|
+ str(value)
|
|
)
|
|
self._best_of = value
|
|
|
|
@property
|
|
def prompt_min_length(self):
|
|
return self._prompt_min_length
|
|
|
|
@prompt_min_length.setter
|
|
def prompt_min_length(self, value):
|
|
value = int(value)
|
|
if value < 10 or value > 4096:
|
|
raise ValueError(
|
|
"prompt_min_length must be greater than 10 and less than 4096, it is currently "
|
|
+ str(value)
|
|
)
|
|
self._prompt_min_length = value
|
|
|
|
async def send_summary_request(self, prompt):
|
|
"""
|
|
Sends a summary request to the OpenAI API
|
|
"""
|
|
summary_request_text = []
|
|
summary_request_text.append(
|
|
"The following is a conversation instruction set and a conversation"
|
|
" between two people, a Human, and GPTie. Firstly, determine the Human's name from the conversation history, then summarize the conversation. Do not summarize the instructions for GPTie, only the conversation. Summarize the conversation in a detailed fashion. If Human mentioned their name, be sure to mention it in the summary. Pay close attention to things the Human has told you, such as personal details."
|
|
)
|
|
summary_request_text.append(prompt + "\nDetailed summary of conversation: \n")
|
|
|
|
summary_request_text = "".join(summary_request_text)
|
|
|
|
tokens = self.usage_service.count_tokens(summary_request_text)
|
|
|
|
print("The summary request will use " + str(tokens) + " tokens.")
|
|
print(f"{self.max_tokens - tokens} is the remaining that we will use.")
|
|
|
|
async with aiohttp.ClientSession() as session:
|
|
payload = {
|
|
"model": Models.DAVINCI,
|
|
"prompt": summary_request_text,
|
|
"temperature": 0.5,
|
|
"top_p": 1,
|
|
"max_tokens": self.max_tokens - tokens,
|
|
"presence_penalty": self.presence_penalty,
|
|
"frequency_penalty": self.frequency_penalty,
|
|
"best_of": self.best_of,
|
|
}
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {self.openai_key}",
|
|
}
|
|
async with session.post(
|
|
"https://api.openai.com/v1/completions", json=payload, headers=headers
|
|
) as resp:
|
|
response = await resp.json()
|
|
|
|
print(response["choices"][0]["text"])
|
|
|
|
tokens_used = int(response["usage"]["total_tokens"])
|
|
self.usage_service.update_usage(tokens_used)
|
|
return response
|
|
|
|
async def send_request(
|
|
self,
|
|
prompt,
|
|
tokens,
|
|
temp_override=None,
|
|
top_p_override=None,
|
|
best_of_override=None,
|
|
frequency_penalty_override=None,
|
|
presence_penalty_override=None,
|
|
max_tokens_override=None,
|
|
) -> (
|
|
dict,
|
|
bool,
|
|
): # The response, and a boolean indicating whether or not the context limit was reached.
|
|
|
|
# Validate that all the parameters are in a good state before we send the request
|
|
if len(prompt) < self.prompt_min_length:
|
|
raise ValueError(
|
|
"Prompt must be greater than 12 characters, it is currently "
|
|
+ str(len(prompt))
|
|
)
|
|
|
|
print("The prompt about to be sent is " + prompt)
|
|
|
|
async with aiohttp.ClientSession() as session:
|
|
payload = {
|
|
"model": self.model,
|
|
"prompt": prompt,
|
|
"temperature": self.temp if not temp_override else temp_override,
|
|
"top_p": self.top_p if not top_p_override else top_p_override,
|
|
"max_tokens": self.max_tokens - tokens
|
|
if not max_tokens_override
|
|
else max_tokens_override,
|
|
"presence_penalty": self.presence_penalty
|
|
if not presence_penalty_override
|
|
else presence_penalty_override,
|
|
"frequency_penalty": self.frequency_penalty
|
|
if not frequency_penalty_override
|
|
else frequency_penalty_override,
|
|
"best_of": self.best_of if not best_of_override else best_of_override,
|
|
}
|
|
headers = {"Authorization": f"Bearer {self.openai_key}"}
|
|
async with session.post(
|
|
"https://api.openai.com/v1/completions", json=payload, headers=headers
|
|
) as resp:
|
|
response = await resp.json()
|
|
print(response)
|
|
# Parse the total tokens used for this request and response pair from the response
|
|
tokens_used = int(response["usage"]["total_tokens"])
|
|
self.usage_service.update_usage(tokens_used)
|
|
|
|
return response
|
|
|
|
async def send_image_request(self, prompt, vary=None) -> tuple[File, list[Any]]:
|
|
# Validate that all the parameters are in a good state before we send the request
|
|
words = len(prompt.split(" "))
|
|
if words < 3 or words > 75:
|
|
raise ValueError(
|
|
"Prompt must be greater than 3 words and less than 75, it is currently "
|
|
+ str(words)
|
|
)
|
|
|
|
# print("The prompt about to be sent is " + prompt)
|
|
self.usage_service.update_usage_image(self.image_size)
|
|
|
|
response = None
|
|
|
|
if not vary:
|
|
payload = {"prompt": prompt, "n": self.num_images, "size": self.image_size}
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {self.openai_key}",
|
|
}
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.post(
|
|
"https://api.openai.com/v1/images/generations",
|
|
json=payload,
|
|
headers=headers,
|
|
) as resp:
|
|
response = await resp.json()
|
|
else:
|
|
async with aiohttp.ClientSession() as session:
|
|
data = aiohttp.FormData()
|
|
data.add_field("n", str(self.num_images))
|
|
data.add_field("size", self.image_size)
|
|
with open(vary, "rb") as f:
|
|
data.add_field(
|
|
"image", f, filename="file.png", content_type="image/png"
|
|
)
|
|
|
|
async with session.post(
|
|
"https://api.openai.com/v1/images/variations",
|
|
headers={
|
|
"Authorization": "Bearer " + self.openai_key,
|
|
},
|
|
data=data,
|
|
) as resp:
|
|
response = await resp.json()
|
|
|
|
print(response)
|
|
print("JUST PRINTED THE RESPONSE")
|
|
|
|
image_urls = []
|
|
for result in response["data"]:
|
|
image_urls.append(result["url"])
|
|
|
|
# For each image url, open it as an image object using PIL
|
|
images = await asyncio.get_running_loop().run_in_executor(
|
|
None,
|
|
lambda: [
|
|
Image.open(requests.get(url, stream=True).raw) for url in image_urls
|
|
],
|
|
)
|
|
|
|
# Save all the images with a random name to self.IMAGE_SAVE_PATH
|
|
image_names = [f"{uuid.uuid4()}.png" for _ in range(len(images))]
|
|
for image, name in zip(images, image_names):
|
|
await asyncio.get_running_loop().run_in_executor(
|
|
None, image.save, f"{self.IMAGE_SAVE_PATH}/{name}"
|
|
)
|
|
|
|
# Update image_urls to include the local path to these new images
|
|
image_urls = [f"{self.IMAGE_SAVE_PATH}/{name}" for name in image_names]
|
|
|
|
widths, heights = zip(*(i.size for i in images))
|
|
|
|
# Calculate the number of rows and columns needed for the grid
|
|
num_rows = num_cols = int(math.ceil(math.sqrt(len(images))))
|
|
|
|
# If there are only 2 images, set the number of rows to 1
|
|
if len(images) == 2:
|
|
num_rows = 1
|
|
|
|
# Calculate the size of the combined image
|
|
width = max(widths) * num_cols
|
|
height = max(heights) * num_rows
|
|
|
|
# Create a transparent image with the same size as the images
|
|
transparent = await asyncio.get_running_loop().run_in_executor(
|
|
None, lambda: Image.new("RGBA", (max(widths), max(heights)))
|
|
)
|
|
|
|
# Create a new image with the calculated size
|
|
new_im = await asyncio.get_running_loop().run_in_executor(
|
|
None, lambda: Image.new("RGBA", (width, height))
|
|
)
|
|
|
|
# Paste the images and transparent segments into the grid
|
|
x_offset = y_offset = 0
|
|
for im in images:
|
|
await asyncio.get_running_loop().run_in_executor(
|
|
None, new_im.paste, im, (x_offset, y_offset)
|
|
)
|
|
|
|
x_offset += im.size[0]
|
|
if x_offset >= width:
|
|
x_offset = 0
|
|
y_offset += im.size[1]
|
|
|
|
# Fill the remaining cells with transparent segments
|
|
while y_offset < height:
|
|
while x_offset < width:
|
|
await asyncio.get_running_loop().run_in_executor(
|
|
None, new_im.paste, transparent, (x_offset, y_offset)
|
|
)
|
|
x_offset += transparent.size[0]
|
|
|
|
x_offset = 0
|
|
y_offset += transparent.size[1]
|
|
|
|
# Save the new_im to a temporary file and return it as a discord.File
|
|
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
|
await asyncio.get_running_loop().run_in_executor(
|
|
None, new_im.save, temp_file.name
|
|
)
|
|
|
|
# Print the filesize of new_im, in mega bytes
|
|
image_size = os.path.getsize(temp_file.name) / 1000000
|
|
|
|
# If the image size is greater than 8MB, we can't return this to the user, so we will need to downscale the
|
|
# image and try again
|
|
safety_counter = 0
|
|
while image_size > 8:
|
|
safety_counter += 1
|
|
if safety_counter >= 3:
|
|
break
|
|
print(
|
|
f"Image size is {image_size}MB, which is too large for discord. Downscaling and trying again"
|
|
)
|
|
# We want to do this resizing asynchronously, so that it doesn't block the main thread during the resize.
|
|
# We can use the asyncio.run_in_executor method to do this
|
|
new_im = await asyncio.get_running_loop().run_in_executor(
|
|
None,
|
|
functools.partial(
|
|
new_im.resize, (int(new_im.width / 1.05), int(new_im.height / 1.05))
|
|
),
|
|
)
|
|
|
|
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
|
await asyncio.get_running_loop().run_in_executor(
|
|
None, new_im.save, temp_file.name
|
|
)
|
|
image_size = os.path.getsize(temp_file.name) / 1000000
|
|
print(f"New image size is {image_size}MB")
|
|
|
|
return (discord.File(temp_file.name), image_urls)
|