You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1014 lines
37 KiB
1014 lines
37 KiB
import asyncio
|
|
import functools
|
|
import math
|
|
import os
|
|
import tempfile
|
|
import traceback
|
|
import uuid
|
|
from typing import Any, Tuple
|
|
|
|
import aiohttp
|
|
import backoff
|
|
import discord
|
|
|
|
# An enum of two modes, TOP_P or TEMPERATURE
|
|
import requests
|
|
from PIL import Image
|
|
from discord import File
|
|
from sqlitedict import SqliteDict
|
|
|
|
try:
|
|
print("Attempting to retrieve the settings DB")
|
|
SETTINGS_DB = SqliteDict("main_db.sqlite", tablename="settings", autocommit=True)
|
|
print("Retrieved the settings DB")
|
|
except Exception as e:
|
|
print("Failed to retrieve the settings DB. The bot is terminating.")
|
|
raise e
|
|
|
|
|
|
class Mode:
|
|
TEMPERATURE = "temperature"
|
|
TOP_P = "top_p"
|
|
|
|
ALL_MODES = [TEMPERATURE, TOP_P]
|
|
|
|
|
|
class Override:
|
|
def __init__(self, temp=None, top_p=None, frequency=None, presence=None):
|
|
self.temperature = temp
|
|
self.top_p = top_p
|
|
self.frequency_penalty = frequency
|
|
self.presence_penalty = presence
|
|
|
|
|
|
class Models:
|
|
# Text models
|
|
DAVINCI = "text-davinci-003"
|
|
CURIE = "text-curie-001"
|
|
BABBAGE = "text-babbage-001"
|
|
ADA = "text-ada-001"
|
|
|
|
# Code models
|
|
CODE_DAVINCI = "code-davinci-002"
|
|
CODE_CUSHMAN = "code-cushman-001"
|
|
|
|
# Embedding models
|
|
EMBEDDINGS = "text-embedding-ada-002"
|
|
|
|
# Edit models
|
|
EDIT = "text-davinci-edit-001"
|
|
CODE_EDIT = "code-davinci-edit-001"
|
|
|
|
# Model collections
|
|
TEXT_MODELS = [DAVINCI, CURIE, BABBAGE, ADA, CODE_DAVINCI, CODE_CUSHMAN]
|
|
EDIT_MODELS = [EDIT, CODE_EDIT]
|
|
|
|
DEFAULT = DAVINCI
|
|
LOW_USAGE_MODEL = CURIE
|
|
|
|
# Tokens Mapping
|
|
TOKEN_MAPPING = {
|
|
"text-davinci-003": 4024,
|
|
"text-curie-001": 2024,
|
|
"text-babbage-001": 2024,
|
|
"text-ada-001": 2024,
|
|
"code-davinci-002": 7900,
|
|
"code-cushman-001": 2024,
|
|
}
|
|
|
|
@staticmethod
|
|
def get_max_tokens(model: str) -> int:
|
|
return Models.TOKEN_MAPPING.get(model, 2024)
|
|
|
|
|
|
class ImageSize:
|
|
SMALL = "256x256"
|
|
MEDIUM = "512x512"
|
|
LARGE = "1024x1024"
|
|
|
|
ALL_SIZES = [SMALL, MEDIUM, LARGE]
|
|
|
|
|
|
class ModelLimits:
|
|
MIN_TOKENS = 15
|
|
MAX_TOKENS = 4096
|
|
|
|
MIN_CONVERSATION_LENGTH = 1
|
|
MAX_CONVERSATION_LENGTH = 500
|
|
|
|
MIN_SUMMARIZE_THRESHOLD = 800
|
|
MAX_SUMMARIZE_THRESHOLD = 3500
|
|
|
|
MIN_NUM_IMAGES = 1
|
|
MAX_NUM_IMAGES = 4
|
|
|
|
MIN_NUM_STATIC_CONVERSATION_ITEMS = 5
|
|
MAX_NUM_STATIC_CONVERSATION_ITEMS = 20
|
|
|
|
MIN_NUM_CONVERSATION_LOOKBACK = 5
|
|
MAX_NUM_CONVERSATION_LOOKBACK = 15
|
|
|
|
MIN_TEMPERATURE = 0.0
|
|
MAX_TEMPERATURE = 2.0
|
|
|
|
MIN_TOP_P = 0.0
|
|
MAX_TOP_P = 1.0
|
|
|
|
MIN_PRESENCE_PENALTY = -2.0
|
|
MAX_PRESENCE_PENALTY = 2.0
|
|
|
|
MIN_FREQUENCY_PENALTY = -2.0
|
|
MAX_FREQUENCY_PENALTY = 2.0
|
|
|
|
MIN_BEST_OF = 1
|
|
MAX_BEST_OF = 3
|
|
|
|
MIN_PROMPT_MIN_LENGTH = 5
|
|
MAX_PROMPT_MIN_LENGTH = 4000
|
|
|
|
|
|
class Model:
|
|
def set_initial_state(self, usage_service):
|
|
self.mode = Mode.TEMPERATURE
|
|
self.temp = (
|
|
SETTINGS_DB["temp"] if "temp" in SETTINGS_DB else 0.8
|
|
) # Higher value means more random, lower value means more likely to be a coherent sentence
|
|
self.top_p = (
|
|
SETTINGS_DB["top_p"] if "top_p" in SETTINGS_DB else 1
|
|
) # 1 is equivalent to greedy sampling, 0.1 means that the model will only consider the top 10% of the probability distribution
|
|
self.max_tokens = (
|
|
SETTINGS_DB["max_tokens"] if "max_tokens" in SETTINGS_DB else 4000
|
|
) # The maximum number of tokens the model can generate
|
|
self.presence_penalty = (
|
|
SETTINGS_DB["presence_penalty"]
|
|
if "presence_penalty" in SETTINGS_DB
|
|
else 0.0
|
|
) # The presence penalty is a number between -2 and 2 that determines how much the model should avoid repeating the same text
|
|
# Penalize new tokens based on their existing frequency in the text so far. (Higher frequency = lower probability of being chosen.)
|
|
self.frequency_penalty = (
|
|
SETTINGS_DB["frequency_penalty"]
|
|
if "frequency_penalty" in SETTINGS_DB
|
|
else 0.0
|
|
)
|
|
self.best_of = (
|
|
SETTINGS_DB["best_of"] if "best_of" in SETTINGS_DB else 1
|
|
) # Number of responses to compare the loglikelihoods of
|
|
self.prompt_min_length = (
|
|
SETTINGS_DB["prompt_min_length"]
|
|
if "prompt_min_length" in SETTINGS_DB
|
|
else 6
|
|
) # The minimum length of the prompt
|
|
self.max_conversation_length = (
|
|
SETTINGS_DB["max_conversation_length"]
|
|
if "max_conversation_length" in SETTINGS_DB
|
|
else 100
|
|
) # The maximum number of conversation items to keep in memory
|
|
self.model = (
|
|
SETTINGS_DB["model"] if "model" in SETTINGS_DB else Models.DEFAULT
|
|
) # The model to use
|
|
self._low_usage_mode = False
|
|
self.usage_service = usage_service
|
|
self.DAVINCI_ROLES = ["admin", "Admin", "GPT", "gpt"]
|
|
self.image_size = (
|
|
SETTINGS_DB["image_size"]
|
|
if "image_size" in SETTINGS_DB
|
|
else ImageSize.MEDIUM
|
|
)
|
|
self.num_images = (
|
|
SETTINGS_DB["num_images"] if "num_images" in SETTINGS_DB else 2
|
|
)
|
|
self.summarize_conversations = (
|
|
bool(SETTINGS_DB["summarize_conversations"])
|
|
if "summarize_conversations" in SETTINGS_DB
|
|
else True
|
|
)
|
|
self.summarize_threshold = (
|
|
SETTINGS_DB["summarize_threshold"]
|
|
if "summarize_threshold" in SETTINGS_DB
|
|
else 3000
|
|
)
|
|
self.model_max_tokens = 4024
|
|
self.welcome_message_enabled = (
|
|
bool(SETTINGS_DB["welcome_message_enabled"])
|
|
if "welcome_message_enabled" in SETTINGS_DB
|
|
else False
|
|
)
|
|
self.num_static_conversation_items = (
|
|
SETTINGS_DB["num_static_conversation_items"]
|
|
if "num_static_conversation_items" in SETTINGS_DB
|
|
else 10
|
|
)
|
|
self.num_conversation_lookback = (
|
|
SETTINGS_DB["num_conversation_lookback"]
|
|
if "num_conversation_lookback" in SETTINGS_DB
|
|
else 5
|
|
)
|
|
|
|
def reset_settings(self):
|
|
keys = [
|
|
"temp",
|
|
"top_p",
|
|
"max_tokens",
|
|
"presence_penalty",
|
|
"frequency_penalty",
|
|
"best_of",
|
|
"prompt_min_length",
|
|
"max_conversation_length",
|
|
"model",
|
|
"image_size",
|
|
"num_images",
|
|
"summarize_conversations",
|
|
"summarize_threshold",
|
|
"welcome_message_enabled",
|
|
"num_static_conversation_items",
|
|
"num_conversation_lookback",
|
|
]
|
|
for key in keys:
|
|
try:
|
|
del SETTINGS_DB[key]
|
|
except:
|
|
pass
|
|
self.set_initial_state(self.usage_service)
|
|
|
|
def __init__(self, usage_service):
|
|
self._num_conversation_lookback = None
|
|
self._num_static_conversation_items = None
|
|
self._welcome_message_enabled = None
|
|
self.model_max_tokens = None
|
|
self._summarize_threshold = None
|
|
self._summarize_conversations = None
|
|
self._num_images = None
|
|
self._image_size = None
|
|
self.DAVINCI_ROLES = None
|
|
self.usage_service = None
|
|
self._low_usage_mode = None
|
|
self._model = None
|
|
self._max_conversation_length = None
|
|
self._prompt_min_length = None
|
|
self._best_of = None
|
|
self._frequency_penalty = None
|
|
self._presence_penalty = None
|
|
self._max_tokens = None
|
|
self._top_p = None
|
|
self._temp = None
|
|
self._mode = None
|
|
self.set_initial_state(usage_service)
|
|
|
|
try:
|
|
self.IMAGE_SAVE_PATH = os.environ["IMAGE_SAVE_PATH"]
|
|
self.custom_image_path = True
|
|
except Exception:
|
|
self.IMAGE_SAVE_PATH = "dalleimages"
|
|
# Try to make this folder called images/ in the local directory if it doesnt exist
|
|
if not os.path.exists(self.IMAGE_SAVE_PATH):
|
|
os.makedirs(self.IMAGE_SAVE_PATH)
|
|
self.custom_image_path = False
|
|
|
|
self._hidden_attributes = [
|
|
"usage_service",
|
|
"DAVINCI_ROLES",
|
|
"custom_image_path",
|
|
"custom_web_root",
|
|
"_hidden_attributes",
|
|
"model_max_tokens",
|
|
"openai_key",
|
|
]
|
|
|
|
self.openai_key = os.getenv("OPENAI_TOKEN")
|
|
|
|
# Use the @property and @setter decorators for all the self fields to provide value checking
|
|
|
|
@property
|
|
def num_static_conversation_items(self):
|
|
return self._num_static_conversation_items
|
|
|
|
@num_static_conversation_items.setter
|
|
def num_static_conversation_items(self, value):
|
|
value = int(value)
|
|
if value < ModelLimits.MIN_NUM_STATIC_CONVERSATION_ITEMS:
|
|
raise ValueError(
|
|
f"Number of static conversation items must be >= {ModelLimits.MIN_NUM_STATIC_CONVERSATION_ITEMS}"
|
|
)
|
|
if value > ModelLimits.MAX_NUM_STATIC_CONVERSATION_ITEMS:
|
|
raise ValueError(
|
|
f"Number of static conversation items must be <= {ModelLimits.MAX_NUM_STATIC_CONVERSATION_ITEMS}, this is to ensure reliability and reduce token wastage!"
|
|
)
|
|
self._num_static_conversation_items = value
|
|
SETTINGS_DB["num_static_conversation_items"] = value
|
|
|
|
@property
|
|
def num_conversation_lookback(self):
|
|
return self._num_conversation_lookback
|
|
|
|
@num_conversation_lookback.setter
|
|
def num_conversation_lookback(self, value):
|
|
value = int(value)
|
|
if value < ModelLimits.MIN_NUM_CONVERSATION_LOOKBACK:
|
|
raise ValueError(
|
|
f"Number of conversations to look back on must be >= {ModelLimits.MIN_NUM_CONVERSATION_LOOKBACK}"
|
|
)
|
|
if value > ModelLimits.MAX_NUM_CONVERSATION_LOOKBACK:
|
|
raise ValueError(
|
|
f"Number of conversations to look back on must be <= {ModelLimits.MIN_NUM_CONVERSATION_LOOKBACK}, this is to ensure reliability and reduce token wastage!"
|
|
)
|
|
self._num_conversation_lookback = value
|
|
SETTINGS_DB["num_conversation_lookback"] = value
|
|
|
|
@property
|
|
def welcome_message_enabled(self):
|
|
return self._welcome_message_enabled
|
|
|
|
@welcome_message_enabled.setter
|
|
def welcome_message_enabled(self, value):
|
|
if not isinstance(value, bool):
|
|
if value.lower() == "true":
|
|
value = True
|
|
elif value.lower() == "false":
|
|
value = False
|
|
else:
|
|
raise ValueError("Value must be either `true` or `false`!")
|
|
self._welcome_message_enabled = value
|
|
SETTINGS_DB["welcome_message_enabled"] = self._welcome_message_enabled
|
|
|
|
@property
|
|
def summarize_threshold(self):
|
|
return self._summarize_threshold
|
|
|
|
@summarize_threshold.setter
|
|
def summarize_threshold(self, value):
|
|
value = int(value)
|
|
if (
|
|
value < ModelLimits.MIN_SUMMARIZE_THRESHOLD
|
|
or value > ModelLimits.MAX_SUMMARIZE_THRESHOLD
|
|
):
|
|
raise ValueError(
|
|
f"Summarize threshold should be a number between {ModelLimits.MIN_SUMMARIZE_THRESHOLD} and {ModelLimits.MAX_SUMMARIZE_THRESHOLD}!"
|
|
)
|
|
self._summarize_threshold = value
|
|
SETTINGS_DB["summarize_threshold"] = value
|
|
|
|
@property
|
|
def summarize_conversations(self):
|
|
return self._summarize_conversations
|
|
|
|
@summarize_conversations.setter
|
|
def summarize_conversations(self, value):
|
|
# convert value string into boolean
|
|
if not isinstance(value, bool):
|
|
if value.lower() == "true":
|
|
value = True
|
|
elif value.lower() == "false":
|
|
value = False
|
|
else:
|
|
raise ValueError("Value must be either `true` or `false`!")
|
|
self._summarize_conversations = value
|
|
SETTINGS_DB["summarize_conversations"] = value
|
|
|
|
@property
|
|
def image_size(self):
|
|
return self._image_size
|
|
|
|
@image_size.setter
|
|
def image_size(self, value):
|
|
if value in ImageSize.ALL_SIZES:
|
|
self._image_size = value
|
|
SETTINGS_DB["image_size"] = value
|
|
else:
|
|
raise ValueError(
|
|
f"Image size must be one of the following: {ImageSize.ALL_SIZES}"
|
|
)
|
|
|
|
@property
|
|
def num_images(self):
|
|
return self._num_images
|
|
|
|
@num_images.setter
|
|
def num_images(self, value):
|
|
value = int(value)
|
|
if value < ModelLimits.MIN_NUM_IMAGES or value > ModelLimits.MAX_NUM_IMAGES:
|
|
raise ValueError(
|
|
f"Number of images to generate should be a number between {ModelLimits.MIN_NUM_IMAGES} and {ModelLimits.MAX_NUM_IMAGES}!"
|
|
)
|
|
self._num_images = value
|
|
SETTINGS_DB["num_images"] = value
|
|
|
|
@property
|
|
def low_usage_mode(self):
|
|
return self._low_usage_mode
|
|
|
|
@low_usage_mode.setter
|
|
def low_usage_mode(self, value):
|
|
# convert value string into boolean
|
|
if value.lower() == "true":
|
|
value = True
|
|
elif value.lower() == "false":
|
|
value = False
|
|
else:
|
|
raise ValueError("Value must be either `true` or `false`!")
|
|
|
|
if value:
|
|
self._model = Models.LOW_USAGE_MODEL
|
|
self.max_tokens = 1900
|
|
self.model_max_tokens = 1000
|
|
else:
|
|
self._model = Models.DEFAULT
|
|
self.max_tokens = 4000
|
|
self.model_max_tokens = 4024
|
|
|
|
@property
|
|
def model(self):
|
|
return self._model
|
|
|
|
@model.setter
|
|
def model(self, model):
|
|
if model not in Models.TEXT_MODELS:
|
|
raise ValueError(f"Invalid model, must be one of: {Models.TEXT_MODELS}")
|
|
self._model = model
|
|
|
|
# Set the token count
|
|
self._max_tokens = Models.get_max_tokens(self._model)
|
|
SETTINGS_DB["model"] = model
|
|
|
|
@property
|
|
def max_conversation_length(self):
|
|
return self._max_conversation_length
|
|
|
|
@max_conversation_length.setter
|
|
def max_conversation_length(self, value):
|
|
value = int(value)
|
|
if value < ModelLimits.MIN_CONVERSATION_LENGTH:
|
|
raise ValueError(
|
|
f"Max conversation length must be greater than {ModelLimits.MIN_CONVERSATION_LENGTH}"
|
|
)
|
|
if value > ModelLimits.MAX_CONVERSATION_LENGTH:
|
|
raise ValueError(
|
|
f"Max conversation length must be less than {ModelLimits.MIN_CONVERSATION_LENGTH}, this will start using credits quick."
|
|
)
|
|
self._max_conversation_length = value
|
|
SETTINGS_DB["max_conversation_length"] = value
|
|
|
|
@property
|
|
def mode(self):
|
|
return self._mode
|
|
|
|
@mode.setter
|
|
def mode(self, value):
|
|
if value not in Mode.ALL_MODES:
|
|
raise ValueError(f"Mode must be one of: {Mode.ALL_MODES}")
|
|
|
|
# Set the other mode to 1 (the default) so that it is not used
|
|
# See https://beta.openai.com/docs/api-reference/completions/create#completions/create-temperature
|
|
if value == Mode.TOP_P:
|
|
self._temp = 1
|
|
elif value == Mode.TEMPERATURE:
|
|
self._top_p = 1
|
|
else:
|
|
raise ValueError(f"Unknown mode: {value}")
|
|
|
|
self._mode = value
|
|
SETTINGS_DB["mode"] = value
|
|
|
|
@property
|
|
def temp(self):
|
|
return self._temp
|
|
|
|
@temp.setter
|
|
def temp(self, value):
|
|
value = float(value)
|
|
if value < ModelLimits.MIN_TEMPERATURE or value > ModelLimits.MAX_TEMPERATURE:
|
|
raise ValueError(
|
|
f"Temperature must be between {ModelLimits.MIN_TEMPERATURE} and {ModelLimits.MAX_TEMPERATURE}, it is currently: {value}"
|
|
)
|
|
|
|
self._temp = value
|
|
SETTINGS_DB["temp"] = value
|
|
|
|
@property
|
|
def top_p(self):
|
|
return self._top_p
|
|
|
|
@top_p.setter
|
|
def top_p(self, value):
|
|
value = float(value)
|
|
if value < ModelLimits.MIN_TOP_P or value > ModelLimits.MAX_TOP_P:
|
|
raise ValueError(
|
|
f"Top P must be between {ModelLimits.MIN_TOP_P} and {ModelLimits.MAX_TOP_P}, it is currently: {value}"
|
|
)
|
|
self._top_p = value
|
|
SETTINGS_DB["top_p"] = value
|
|
|
|
@property
|
|
def max_tokens(self):
|
|
return self._max_tokens
|
|
|
|
@max_tokens.setter
|
|
def max_tokens(self, value):
|
|
value = int(value)
|
|
if value < ModelLimits.MIN_TOKENS or value > ModelLimits.MAX_TOKENS:
|
|
raise ValueError(
|
|
f"Max tokens must be between {ModelLimits.MIN_TOKENS} and {ModelLimits.MAX_TOKENS}, it is currently: {value}"
|
|
)
|
|
self._max_tokens = value
|
|
SETTINGS_DB["max_tokens"] = value
|
|
|
|
@property
|
|
def presence_penalty(self):
|
|
return self._presence_penalty
|
|
|
|
@presence_penalty.setter
|
|
def presence_penalty(self, value):
|
|
value = float(value)
|
|
if (
|
|
value < ModelLimits.MIN_PRESENCE_PENALTY
|
|
or value > ModelLimits.MAX_PRESENCE_PENALTY
|
|
):
|
|
raise ValueError(
|
|
f"Presence penalty must be between {ModelLimits.MIN_PRESENCE_PENALTY} and {ModelLimits.MAX_PRESENCE_PENALTY}, it is currently: {value}"
|
|
)
|
|
self._presence_penalty = value
|
|
SETTINGS_DB["presence_penalty"] = value
|
|
|
|
@property
|
|
def frequency_penalty(self):
|
|
return self._frequency_penalty
|
|
|
|
@frequency_penalty.setter
|
|
def frequency_penalty(self, value):
|
|
value = float(value)
|
|
if (
|
|
value < ModelLimits.MIN_FREQUENCY_PENALTY
|
|
or value > ModelLimits.MAX_FREQUENCY_PENALTY
|
|
):
|
|
raise ValueError(
|
|
f"Frequency penalty must be greater between {ModelLimits.MIN_FREQUENCY_PENALTY} and {ModelLimits.MAX_FREQUENCY_PENALTY}, it is currently: {value}"
|
|
)
|
|
self._frequency_penalty = value
|
|
SETTINGS_DB["frequency_penalty"] = value
|
|
|
|
@property
|
|
def best_of(self):
|
|
return self._best_of
|
|
|
|
@best_of.setter
|
|
def best_of(self, value):
|
|
value = int(value)
|
|
if value < ModelLimits.MIN_BEST_OF or value > ModelLimits.MAX_BEST_OF:
|
|
raise ValueError(
|
|
f"Best of must be between {ModelLimits.MIN_BEST_OF} and {ModelLimits.MAX_BEST_OF}, it is currently: {value}\nNote that increasing the value of this parameter will act as a multiplier on the number of tokens requested!"
|
|
)
|
|
self._best_of = value
|
|
SETTINGS_DB["best_of"] = value
|
|
|
|
@property
|
|
def prompt_min_length(self):
|
|
return self._prompt_min_length
|
|
|
|
@prompt_min_length.setter
|
|
def prompt_min_length(self, value):
|
|
value = int(value)
|
|
if (
|
|
value < ModelLimits.MIN_PROMPT_MIN_LENGTH
|
|
or value > ModelLimits.MAX_PROMPT_MIN_LENGTH
|
|
):
|
|
raise ValueError(
|
|
f"Minimal prompt length must be between {ModelLimits.MIN_PROMPT_MIN_LENGTH} and {ModelLimits.MAX_PROMPT_MIN_LENGTH}, it is currently: {value}"
|
|
)
|
|
self._prompt_min_length = value
|
|
SETTINGS_DB["prompt_min_length"] = value
|
|
|
|
def backoff_handler_http(details):
|
|
print(
|
|
f"Backing off {details['wait']:0.1f} seconds after {details['tries']} tries calling function {details['target']} | "
|
|
f"{details['exception'].status}: {details['exception'].message}"
|
|
)
|
|
|
|
def backoff_handler_request(details):
|
|
print(
|
|
f"Backing off {details['wait']:0.1f} seconds after {details['tries']} tries calling function {details['target']} | "
|
|
f"{details['exception'].args[0]}"
|
|
)
|
|
|
|
async def valid_text_request(self, response):
|
|
try:
|
|
tokens_used = int(response["usage"]["total_tokens"])
|
|
await self.usage_service.update_usage(tokens_used)
|
|
except Exception as e:
|
|
raise ValueError(
|
|
"The API returned an invalid response: "
|
|
+ str(response["error"]["message"])
|
|
) from e
|
|
|
|
@backoff.on_exception(
|
|
backoff.expo,
|
|
aiohttp.ClientResponseError,
|
|
factor=3,
|
|
base=5,
|
|
max_tries=4,
|
|
on_backoff=backoff_handler_http,
|
|
)
|
|
async def send_embedding_request(self, text, custom_api_key=None):
|
|
async with aiohttp.ClientSession(raise_for_status=True) as session:
|
|
payload = {
|
|
"model": Models.EMBEDDINGS,
|
|
"input": text,
|
|
}
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}",
|
|
}
|
|
async with session.post(
|
|
"https://api.openai.com/v1/embeddings", json=payload, headers=headers
|
|
) as resp:
|
|
response = await resp.json()
|
|
|
|
try:
|
|
return response["data"][0]["embedding"]
|
|
except Exception:
|
|
print(response)
|
|
traceback.print_exc()
|
|
return
|
|
|
|
@backoff.on_exception(
|
|
backoff.expo,
|
|
ValueError,
|
|
factor=3,
|
|
base=5,
|
|
max_tries=4,
|
|
on_backoff=backoff_handler_request,
|
|
)
|
|
async def send_edit_request(
|
|
self,
|
|
instruction,
|
|
text=None,
|
|
temp_override=None,
|
|
top_p_override=None,
|
|
codex=False,
|
|
custom_api_key=None,
|
|
):
|
|
# Validate that all the parameters are in a good state before we send the request
|
|
if len(instruction) < self.prompt_min_length:
|
|
raise ValueError(
|
|
"Instruction must be greater than 8 characters, it is currently "
|
|
+ str(len(instruction))
|
|
)
|
|
|
|
print(
|
|
f"The text about to be edited is [{text}] with instructions [{instruction}] codex [{codex}]"
|
|
)
|
|
print(f"Overrides -> temp:{temp_override}, top_p:{top_p_override}")
|
|
|
|
async with aiohttp.ClientSession(raise_for_status=False) as session:
|
|
payload = {
|
|
"model": Models.EDIT if codex is False else Models.CODE_EDIT,
|
|
"input": "" if text is None else text,
|
|
"instruction": instruction,
|
|
"temperature": self.temp if temp_override is None else temp_override,
|
|
"top_p": self.top_p if top_p_override is None else top_p_override,
|
|
}
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}",
|
|
}
|
|
async with session.post(
|
|
"https://api.openai.com/v1/edits", json=payload, headers=headers
|
|
) as resp:
|
|
response = await resp.json()
|
|
await self.valid_text_request(response)
|
|
return response
|
|
|
|
@backoff.on_exception(
|
|
backoff.expo,
|
|
aiohttp.ClientResponseError,
|
|
factor=3,
|
|
base=5,
|
|
max_tries=6,
|
|
on_backoff=backoff_handler_http,
|
|
)
|
|
async def send_moderations_request(self, text):
|
|
# Use aiohttp to send the above request:
|
|
async with aiohttp.ClientSession(raise_for_status=True) as session:
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {self.openai_key}",
|
|
}
|
|
payload = {"input": text}
|
|
async with session.post(
|
|
"https://api.openai.com/v1/moderations",
|
|
headers=headers,
|
|
json=payload,
|
|
) as response:
|
|
return await response.json()
|
|
|
|
@backoff.on_exception(
|
|
backoff.expo,
|
|
ValueError,
|
|
factor=3,
|
|
base=5,
|
|
max_tries=4,
|
|
on_backoff=backoff_handler_request,
|
|
)
|
|
async def send_summary_request(self, prompt, custom_api_key=None):
|
|
"""
|
|
Sends a summary request to the OpenAI API
|
|
"""
|
|
summary_request_text = []
|
|
summary_request_text.append(
|
|
"The following is a conversation instruction set and a conversation between two people, a <username>, and GPTie."
|
|
" Firstly, determine the <username>'s name from the conversation history, then summarize the conversation."
|
|
" Do not summarize the instructions for GPTie, only the conversation. Summarize the conversation in a detailed fashion. If <username> mentioned"
|
|
" their name, be sure to mention it in the summary. Pay close attention to things the <username> has told you, such as personal details."
|
|
)
|
|
summary_request_text.append(prompt + "\nDetailed summary of conversation: \n")
|
|
|
|
summary_request_text = "".join(summary_request_text)
|
|
|
|
tokens = self.usage_service.count_tokens(summary_request_text)
|
|
|
|
async with aiohttp.ClientSession(raise_for_status=False) as session:
|
|
payload = {
|
|
"model": Models.DAVINCI,
|
|
"prompt": summary_request_text,
|
|
"temperature": 0.5,
|
|
"top_p": 1,
|
|
"max_tokens": self.max_tokens - tokens,
|
|
"presence_penalty": self.presence_penalty,
|
|
"frequency_penalty": self.frequency_penalty,
|
|
"best_of": self.best_of,
|
|
}
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}",
|
|
}
|
|
async with session.post(
|
|
"https://api.openai.com/v1/completions", json=payload, headers=headers
|
|
) as resp:
|
|
response = await resp.json()
|
|
|
|
await self.valid_text_request(response)
|
|
|
|
# print(response["choices"][0]["text"])
|
|
|
|
return response
|
|
|
|
@backoff.on_exception(
|
|
backoff.expo,
|
|
ValueError,
|
|
factor=3,
|
|
base=5,
|
|
max_tries=4,
|
|
on_backoff=backoff_handler_request,
|
|
)
|
|
async def send_request(
|
|
self,
|
|
prompt,
|
|
tokens,
|
|
temp_override=None,
|
|
top_p_override=None,
|
|
best_of_override=None,
|
|
frequency_penalty_override=None,
|
|
presence_penalty_override=None,
|
|
max_tokens_override=None,
|
|
model=None,
|
|
stop=None,
|
|
custom_api_key=None,
|
|
) -> (
|
|
Tuple[dict, bool]
|
|
): # The response, and a boolean indicating whether or not the context limit was reached.
|
|
# Validate that all the parameters are in a good state before we send the request
|
|
if len(prompt) < self.prompt_min_length:
|
|
raise ValueError(
|
|
f"Prompt must be greater than {self.prompt_min_length} characters, it is currently: {len(prompt)} characters"
|
|
)
|
|
|
|
if not max_tokens_override:
|
|
if model:
|
|
max_tokens_override = Models.get_max_tokens(model) - tokens
|
|
|
|
print(f"The prompt about to be sent is {prompt}")
|
|
print(
|
|
f"Overrides -> temp:{temp_override}, top_p:{top_p_override} frequency:{frequency_penalty_override}, presence:{presence_penalty_override}"
|
|
)
|
|
|
|
async with aiohttp.ClientSession(raise_for_status=False) as session:
|
|
payload = {
|
|
"model": self.model if model is None else model,
|
|
"prompt": prompt,
|
|
"stop": "" if stop is None else stop,
|
|
"temperature": self.temp if temp_override is None else temp_override,
|
|
"top_p": self.top_p if top_p_override is None else top_p_override,
|
|
"max_tokens": self.max_tokens - tokens
|
|
if max_tokens_override is None
|
|
else max_tokens_override,
|
|
"presence_penalty": self.presence_penalty
|
|
if presence_penalty_override is None
|
|
else presence_penalty_override,
|
|
"frequency_penalty": self.frequency_penalty
|
|
if frequency_penalty_override is None
|
|
else frequency_penalty_override,
|
|
"best_of": self.best_of if not best_of_override else best_of_override,
|
|
}
|
|
headers = {
|
|
"Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}"
|
|
}
|
|
async with session.post(
|
|
"https://api.openai.com/v1/completions", json=payload, headers=headers
|
|
) as resp:
|
|
response = await resp.json()
|
|
# print(f"Payload -> {payload}")
|
|
# Parse the total tokens used for this request and response pair from the response
|
|
await self.valid_text_request(response)
|
|
print(f"Response -> {response}")
|
|
|
|
return response
|
|
|
|
@staticmethod
|
|
async def send_test_request(api_key):
|
|
async with aiohttp.ClientSession() as session:
|
|
payload = {
|
|
"model": Models.LOW_USAGE_MODEL,
|
|
"prompt": "test.",
|
|
"temperature": 1,
|
|
"top_p": 1,
|
|
"max_tokens": 10,
|
|
}
|
|
headers = {"Authorization": f"Bearer {api_key}"}
|
|
async with session.post(
|
|
"https://api.openai.com/v1/completions", json=payload, headers=headers
|
|
) as resp:
|
|
response = await resp.json()
|
|
try:
|
|
int(response["usage"]["total_tokens"])
|
|
except:
|
|
raise ValueError(str(response["error"]["message"]))
|
|
|
|
return response
|
|
|
|
@backoff.on_exception(
|
|
backoff.expo,
|
|
aiohttp.ClientResponseError,
|
|
factor=3,
|
|
base=5,
|
|
max_tries=4,
|
|
on_backoff=backoff_handler_http,
|
|
)
|
|
async def send_image_request(
|
|
self, ctx, prompt, vary=None, custom_api_key=None
|
|
) -> tuple[File, list[Any]]:
|
|
# Validate that all the parameters are in a good state before we send the request
|
|
words = len(prompt.split(" "))
|
|
if words < 3 or words > 75:
|
|
raise ValueError(
|
|
"Prompt must be greater than 3 words and less than 75, it is currently "
|
|
+ str(words)
|
|
)
|
|
|
|
# print("The prompt about to be sent is " + prompt)
|
|
await self.usage_service.update_usage_image(self.image_size)
|
|
|
|
response = None
|
|
|
|
if not vary:
|
|
payload = {"prompt": prompt, "n": self.num_images, "size": self.image_size}
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}",
|
|
}
|
|
async with aiohttp.ClientSession(raise_for_status=True) as session:
|
|
async with session.post(
|
|
"https://api.openai.com/v1/images/generations",
|
|
json=payload,
|
|
headers=headers,
|
|
) as resp:
|
|
response = await resp.json()
|
|
|
|
else:
|
|
async with aiohttp.ClientSession(raise_for_status=True) as session:
|
|
data = aiohttp.FormData()
|
|
data.add_field("n", str(self.num_images))
|
|
data.add_field("size", self.image_size)
|
|
with open(vary, "rb") as f:
|
|
data.add_field(
|
|
"image", f, filename="file.png", content_type="image/png"
|
|
)
|
|
|
|
async with session.post(
|
|
"https://api.openai.com/v1/images/variations",
|
|
headers={
|
|
"Authorization": f"Bearer {self.openai_key if not custom_api_key else custom_api_key}",
|
|
},
|
|
data=data,
|
|
) as resp:
|
|
response = await resp.json()
|
|
|
|
print(response)
|
|
|
|
image_urls = []
|
|
for result in response["data"]:
|
|
image_urls.append(result["url"])
|
|
|
|
# For each image url, open it as an image object using PIL
|
|
images = await asyncio.get_running_loop().run_in_executor(
|
|
None,
|
|
lambda: [
|
|
Image.open(requests.get(url, stream=True, timeout=10).raw)
|
|
for url in image_urls
|
|
],
|
|
)
|
|
|
|
# Save all the images with a random name to self.IMAGE_SAVE_PATH
|
|
image_names = [f"{uuid.uuid4()}.png" for _ in range(len(images))]
|
|
for image, name in zip(images, image_names):
|
|
await asyncio.get_running_loop().run_in_executor(
|
|
None, image.save, f"{self.IMAGE_SAVE_PATH}/{name}"
|
|
)
|
|
|
|
# Update image_urls to include the local path to these new images
|
|
image_urls = [f"{self.IMAGE_SAVE_PATH}/{name}" for name in image_names]
|
|
|
|
widths, heights = zip(*(i.size for i in images))
|
|
|
|
# Calculate the number of rows and columns needed for the grid
|
|
num_rows = num_cols = int(math.ceil(math.sqrt(len(images))))
|
|
|
|
# If there are only 2 images, set the number of rows to 1
|
|
if len(images) == 2:
|
|
num_rows = 1
|
|
|
|
# Calculate the size of the combined image
|
|
width = max(widths) * num_cols
|
|
height = max(heights) * num_rows
|
|
|
|
# Create a transparent image with the same size as the images
|
|
transparent = await asyncio.get_running_loop().run_in_executor(
|
|
None, lambda: Image.new("RGBA", (max(widths), max(heights)))
|
|
)
|
|
|
|
# Create a new image with the calculated size
|
|
new_im = await asyncio.get_running_loop().run_in_executor(
|
|
None, lambda: Image.new("RGBA", (width, height))
|
|
)
|
|
|
|
# Paste the images and transparent segments into the grid
|
|
x_offset = y_offset = 0
|
|
for im in images:
|
|
await asyncio.get_running_loop().run_in_executor(
|
|
None, new_im.paste, im, (x_offset, y_offset)
|
|
)
|
|
|
|
x_offset += im.size[0]
|
|
if x_offset >= width:
|
|
x_offset = 0
|
|
y_offset += im.size[1]
|
|
|
|
# Fill the remaining cells with transparent segments
|
|
while y_offset < height:
|
|
while x_offset < width:
|
|
await asyncio.get_running_loop().run_in_executor(
|
|
None, new_im.paste, transparent, (x_offset, y_offset)
|
|
)
|
|
x_offset += transparent.size[0]
|
|
|
|
x_offset = 0
|
|
y_offset += transparent.size[1]
|
|
|
|
# Save the new_im to a temporary file and return it as a discord.File
|
|
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
|
await asyncio.get_running_loop().run_in_executor(
|
|
None, new_im.save, temp_file.name
|
|
)
|
|
|
|
# Print the filesize of new_im, in mega bytes
|
|
image_size = os.path.getsize(temp_file.name) / 1048576
|
|
if ctx.guild is None:
|
|
guild_file_limit = 8
|
|
else:
|
|
guild_file_limit = ctx.guild.filesize_limit / 1048576
|
|
|
|
# If the image size is greater than 8MB, we can't return this to the user, so we will need to downscale the
|
|
# image and try again
|
|
safety_counter = 0
|
|
while image_size > guild_file_limit:
|
|
safety_counter += 1
|
|
if safety_counter >= 3:
|
|
break
|
|
print(
|
|
f"Image size is {image_size}MB, which is too large for this server {guild_file_limit}MB. Downscaling and trying again"
|
|
)
|
|
# We want to do this resizing asynchronously, so that it doesn't block the main thread during the resize.
|
|
# We can use the asyncio.run_in_executor method to do this
|
|
new_im = await asyncio.get_running_loop().run_in_executor(
|
|
None,
|
|
functools.partial(
|
|
new_im.resize, (int(new_im.width / 1.05), int(new_im.height / 1.05))
|
|
),
|
|
)
|
|
|
|
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
|
await asyncio.get_running_loop().run_in_executor(
|
|
None, new_im.save, temp_file.name
|
|
)
|
|
image_size = os.path.getsize(temp_file.name) / 1000000
|
|
print(f"New image size is {image_size}MB")
|
|
|
|
return (discord.File(temp_file.name), image_urls)
|