#region Copyright // /************************************************************************ // Copyright (c) 2016 Jamie Rees // File: StringCipher.cs // Created By: Jamie Rees // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // ************************************************************************/ #endregion using System; using System.IO; using System.Linq; using System.Security.Cryptography; using System.Text; namespace RequestPlex.Helpers { public class StringCipher { // This constant determines the number of iterations for the password bytes generation function. private const int DerivationIterations = 1000; // This constant is used to determine the keysize of the encryption algorithm in bits. // We divide this by 8 within the code below to get the equivalent number of bytes. private const int Keysize = 256; /// /// Decrypts the specified cipher text. /// /// The cipher text. /// The pass phrase. /// public static string Decrypt(string cipherText, string passPhrase) { // Get the complete stream of bytes that represent: // [32 bytes of Salt] + [32 bytes of IV] + [n bytes of CipherText] var cipherTextBytesWithSaltAndIv = Convert.FromBase64String(cipherText); // Get the saltbytes by extracting the first 32 bytes from the supplied cipherText bytes. var saltStringBytes = cipherTextBytesWithSaltAndIv.Take(Keysize / 8).ToArray(); // Get the IV bytes by extracting the next 32 bytes from the supplied cipherText bytes. var ivStringBytes = cipherTextBytesWithSaltAndIv.Skip(Keysize / 8).Take(Keysize / 8).ToArray(); // Get the actual cipher text bytes by removing the first 64 bytes from the cipherText string. var cipherTextBytes = cipherTextBytesWithSaltAndIv.Skip((Keysize / 8) * 2).Take(cipherTextBytesWithSaltAndIv.Length - ((Keysize / 8) * 2)).ToArray(); using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations)) { var keyBytes = password.GetBytes(Keysize / 8); using (var symmetricKey = new RijndaelManaged()) { symmetricKey.BlockSize = 256; symmetricKey.Mode = CipherMode.CBC; symmetricKey.Padding = PaddingMode.PKCS7; using (var decryptor = symmetricKey.CreateDecryptor(keyBytes, ivStringBytes)) { using (var memoryStream = new MemoryStream(cipherTextBytes)) { using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read)) { var plainTextBytes = new byte[cipherTextBytes.Length]; var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length); memoryStream.Close(); cryptoStream.Close(); return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount); } } } } } } /// /// Encrypts the specified plain text. /// /// The plain text. /// The pass phrase. /// public static string Encrypt(string plainText, string passPhrase) { // Salt and IV is randomly generated each time, but is preprended to encrypted cipher text // so that the same Salt and IV values can be used when decrypting. var saltStringBytes = Generate256BitsOfRandomEntropy(); var ivStringBytes = Generate256BitsOfRandomEntropy(); var plainTextBytes = Encoding.UTF8.GetBytes(plainText); using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations)) { var keyBytes = password.GetBytes(Keysize / 8); using (var symmetricKey = new RijndaelManaged()) { symmetricKey.BlockSize = 256; symmetricKey.Mode = CipherMode.CBC; symmetricKey.Padding = PaddingMode.PKCS7; using (var encryptor = symmetricKey.CreateEncryptor(keyBytes, ivStringBytes)) { using (var memoryStream = new MemoryStream()) { using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write)) { cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length); cryptoStream.FlushFinalBlock(); // Create the final bytes as a concatenation of the random salt bytes, the random iv bytes and the cipher bytes. var cipherTextBytes = saltStringBytes; cipherTextBytes = cipherTextBytes.Concat(ivStringBytes).ToArray(); cipherTextBytes = cipherTextBytes.Concat(memoryStream.ToArray()).ToArray(); memoryStream.Close(); cryptoStream.Close(); return Convert.ToBase64String(cipherTextBytes); } } } } } } /// /// Generate256s the bits of random entropy. /// /// private static byte[] Generate256BitsOfRandomEntropy() { var randomBytes = new byte[32]; // 32 Bytes will give us 256 bits. using (var rngCsp = new RNGCryptoServiceProvider()) { // Fill the array with cryptographically secure random bytes. rngCsp.GetBytes(randomBytes); } return randomBytes; } } }