Using a Levenshtein distance algorithm.pull/3113/head
parent
50303ce470
commit
e28123eefd
@ -0,0 +1,55 @@
|
||||
using System;
|
||||
using System.Globalization;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Text.RegularExpressions;
|
||||
using ICSharpCode.SharpZipLib.Zip;
|
||||
|
||||
namespace NzbDrone.Common
|
||||
{
|
||||
public static class LevenstheinExtensions
|
||||
{
|
||||
public static Int32 LevenshteinDistance(this String text, String other, Int32 costInsert = 1, Int32 costDelete = 1, Int32 costSubstitute = 1)
|
||||
{
|
||||
if (text == other) return 0;
|
||||
if (text.Length == 0) return other.Length * costInsert;
|
||||
if (other.Length == 0) return text.Length * costDelete;
|
||||
|
||||
Int32[] matrix = new Int32[other.Length + 1];
|
||||
|
||||
for (var i = 1; i < matrix.Length; i++)
|
||||
{
|
||||
matrix[i] = i * costInsert;
|
||||
}
|
||||
|
||||
for (var i = 0; i < text.Length; i++)
|
||||
{
|
||||
Int32 topLeft = matrix[0];
|
||||
matrix[0] = matrix[0] + costDelete;
|
||||
|
||||
for (var j = 0; j < other.Length; j++)
|
||||
{
|
||||
Int32 top = matrix[j];
|
||||
Int32 left = matrix[j + 1];
|
||||
|
||||
var sumIns = top + costInsert;
|
||||
var sumDel = left + costDelete;
|
||||
var sumSub = topLeft + (text[i] == other[j] ? 0 : costSubstitute);
|
||||
|
||||
topLeft = matrix[j + 1];
|
||||
matrix[j + 1] = Math.Min(Math.Min(sumIns, sumDel), sumSub);
|
||||
}
|
||||
}
|
||||
|
||||
return matrix[other.Length];
|
||||
}
|
||||
|
||||
public static Int32 LevenshteinDistanceClean(this String expected, String other)
|
||||
{
|
||||
expected = expected.ToLower().Replace(".", "");
|
||||
other = other.ToLower().Replace(".", "");
|
||||
|
||||
return expected.LevenshteinDistance(other, 1, 3, 3);
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in new issue