Fixed: Speed up RSS sync

pull/1470/head
ta264 3 years ago
parent 24e2ff56dd
commit 2a4f681b17

@ -1,4 +1,4 @@
using FluentAssertions;
using FluentAssertions;
using NUnit.Framework;
using NzbDrone.Common.Extensions;
using NzbDrone.Test.Common;
@ -25,24 +25,6 @@ namespace NzbDrone.Common.Test
text.LevenshteinDistance(other).Should().Be(expected);
}
[TestCase("", "", 0)]
[TestCase("abc", "abc", 0)]
[TestCase("abc", "abcd", 1)]
[TestCase("abcd", "abc", 3)]
[TestCase("abc", "abd", 3)]
[TestCase("abc", "adc", 3)]
[TestCase("abcdefgh", "abcghdef", 8)]
[TestCase("a.b.c.", "abc", 0)]
[TestCase("Agents of shield", "Marvel's Agents Of S.H.I.E.L.D.", 9)]
[TestCase("Agents of shield", "Agents of cracked", 14)]
[TestCase("Agents of shield", "the shield", 24)]
[TestCase("ABCxxx", "ABC1xx", 3)]
[TestCase("ABC1xx", "ABCxxx", 3)]
public void LevenshteinDistanceClean(string text, string other, int expected)
{
text.ToLower().LevenshteinDistanceClean(other.ToLower()).Should().Be(expected);
}
[TestCase("hello", "hello")]
[TestCase("hello", "bye")]
[TestCase("a longer string", "a different long string")]
@ -58,5 +40,26 @@ namespace NzbDrone.Common.Test
{
a.FuzzyMatch(b).Should().Be(expected);
}
[TestCase("AVERY", "GARVEY", 3)]
[TestCase("ADCROFT", "ADDESSI", 5)]
[TestCase("BAIRD", "BAISDEN", 3)]
[TestCase("BOGGAN", "BOGGS", 2)]
[TestCase("CLAYTON", "CLEARY", 5)]
[TestCase("DYBAS", "DYCKMAN", 4)]
[TestCase("EMINETH", "EMMERT", 4)]
[TestCase("GALANTE", "GALICKI", 4)]
[TestCase("HARDIN", "HARDING", 1)]
[TestCase("KEHOE", "KEHR", 2)]
[TestCase("LOWRY", "LUBARSKY", 5)]
[TestCase("MAGALLAN", "MAGANA", 3)]
[TestCase("MAYO", "MAYS", 1)]
[TestCase("MOENY", "MOFFETT", 4)]
[TestCase("PARE", "PARENT", 2)]
[TestCase("RAMEY", "RAMFREY", 2)]
public void BMtest(string a, string b, int expected)
{
ModifiedBerghelRoachEditDistance.GetDistance(a, b, 10).Should().Be(expected);
}
}
}

@ -0,0 +1,478 @@
/*
* Copyright 2010 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
using System;
using System.Diagnostics;
namespace NzbDrone.Common.Extensions
{
/**
* A modified version of a string edit distance described by Berghel and
* Roach that uses only O(d) space and O(n*d) worst-case time, where n is
* the pattern string length and d is the edit distance computed.
* We achieve the space reduction by keeping only those sub-computations
* required to compute edit distance, giving up the ability to
* reconstruct the edit path.
*/
public static class ModifiedBerghelRoachEditDistance
{
/*
* This is a modification of the original Berghel-Roach edit
* distance (based on prior work by Ukkonen) described in
* ACM Transactions on Information Systems, Vol. 14, No. 1,
* January 1996, pages 94-106.
*
* I observed that only O(d) prior computations are required
* to compute edit distance. Rather than keeping all prior
* f(k,p) results in a matrix, we keep only the two "outer edges"
* in the triangular computation pattern that will be used in
* subsequent rounds. We cannot reconstruct the edit path,
* but many applications do not require that; for them, this
* modification uses less space (and empirically, slightly
* less time).
*
* First, some history behind the algorithm necessary to understand
* Berghel-Roach and our modification...
*
* The traditional algorithm for edit distance uses dynamic programming,
* building a matrix of distances for substrings:
* D[i,j] holds the distance for string1[0..i]=>string2[0..j].
* The matrix is initially populated with the trivial values
* D[0,j]=j and D[i,0]=i; and then expanded with the rule:
* <pre>
* D[i,j] = min( D[i-1,j]+1, // insertion
* D[i,j-1]+1, // deletion
* (D[i-1,j-1]
* + (string1[i]==string2[j])
* ? 0 // match
* : 1 // substitution ) )
* </pre>
*
* Ukkonen observed that each diagonal of the matrix must increase
* by either 0 or 1 from row to row. If D[i,j] = p, then the
* matching rule requires that D[i+x,j+x] = p for all x
* where string1[i..i+x) matches string2[j..j+j+x). Ukkonen
* defined a function f(k,p) as the highest row number in which p
* appears on the k-th diagonal (those D[i,j] where k=(i-j), noting
* that k may be negative). The final result of the edit
* distance is the D[n,m] cell, on the (n-m) diagonal; it is
* the value of p for which f(n-m, p) = m. The function f can
* also be computed dynamically, according to a simple recursion:
* <pre>
* f(k,p) {
* contains_p = max(f(k-1,p-1), f(k,p-1)+1, f(k+1,p-1)+1)
* while (string1[contains_p] == string2[contains_p + k])
* contains_p++;
* return contains_p;
* }
* </pre>
* The max() expression finds a row where the k-th diagonal must
* contain p by virtue of an edit from the prior, same, or following
* diagonal (corresponding to an insert, substitute, or delete);
* we need not consider more distant diagonals because row-to-row
* and column-to-column changes are at most +/- 1.
*
* The original Ukkonen algorithm computed f(k,p) roughly as
* follows:
* <pre>
* for (p = 0; ; p++) {
* compute f(k,p) for all valid k
* if (f(n-m, p) == m) return p;
* }
* </pre>
*
* Berghel and Roach observed that many values of f(k,p) are
* computed unnecessarily, and reorganized the computation into
* a just-in-time sequence. In each iteration, we are primarily
* interested in the terminating value f(main,p), where main=(n-m)
* is the main diagonal. To compute that we need f(x,p-1) for
* three values of x: main-1, main, and main+1. Those depend on
* values for p-2, and so forth. We will already have computed
* f(main,p-1) in the prior round, and thus f(main-1,p-2) and
* f(main+1,p-2), and so forth. The only new values we need to compute
* are on the edges: f(main-i,p-i) and f(main+i,p-i). Noting that
* f(k,p) is only meaningful when abs(k) is no greater than p,
* one of the Berghel-Roach reviewers noted that we can compute
* the bounds for i:
* <pre>
* (main+i &le p-i) implies (i &le; (p-main)/2)
* </pre>
* (where main+i is limited on the positive side) and similarly
* <pre>
* (-(main-i) &le p-i) implies (i &le; (p+main)/2).
* </pre>
* (where main-i is limited on the negative side).
*
* This reduces the computation sequence to
* <pre>
* for (i = (p-main)/2; i > 0; i--) compute f(main+i,p-i);
* for (i = (p+main)/2; i > 0; i--) compute f(main-i,p-i);
* if (f(main, p) == m) return p;
* </pre>
*
* The original Berghel-Roach algorithm recorded prior values
* of f(k,p) in a matrix, using O(distance^2) space, enabling
* reconstruction of the edit path, but if all we want is the
* edit *distance*, we only need to keep O(distance) prior computations.
*
* The requisite prior k-1, k, and k+1 values are conveniently
* computed in the current round and the two preceding it.
* For example, on the higher-diagonal side, we compute:
* <pre>
* current[i] = f(main+i, p-i)
* </pre>
* We keep the two prior rounds of results, where p was one and two
* smaller. So, from the preceidng round
* <pre>
* last[i] = f(main+i, (p-1)-i)
* </pre>
* and from the prior round, but one position back:
* <pre>
* prior[i-1] = f(main+(i-1), (p-2)-(i-1))
* </pre>
* In the current round, one iteration earlier:
* <pre>
* current[i+1] = f(main+(i+1), p-(i+1))
* </pre>
* Note that the distance in all of these evaluates to p-i-1,
* and the diagonals are (main+i) and its neighbors... just
* what we need. The lower-diagonal side behaves similarly.
*
* We need to materialize values that are not computed in prior
* rounds, for either of two reasons: <ul>
* <li> Initially, we have no prior rounds, so we need to fill
* all of the "last" and "prior" values for use in the
* first round. The first round uses only on one side
* of the main diagonal or the other.
* <li> In every other round, we compute one more diagonal than before.
* </ul>
* In all of these cases, the missing f(k,p) values are for abs(k) > p,
* where a real value of f(k,p) is undefined. [The original Berghel-Roach
* algorithm prefills its F matrix with these values, but we fill
* them as we go, as needed.] We define
* <pre>
* f(-p-1,p) = p, so that we start diagonal -p with row p,
* f(p+1,p) = -1, so that we start diagonal p with row 0.
* </pre>
* (We also allow f(p+2,p)=f(-p-2,p)=-1, causing those values to
* have no effect in the starting row computation.]
*
* We only expand the set of diagonals visited every other round,
* when (p-main) or (p+main) is even. We keep track of even/oddness
* to save some arithmetic. The first round is always even, as p=abs(main).
* Note that we rename the "f" function to "computeRow" to be Googley.
*/
public static int LevenshteinDistance(this string text, string other)
{
return ModifiedBerghelRoachEditDistance.GetDistance(text, other);
}
public static int GetDistance(string target, string pattern, int limit = 20)
{
return GetDistance(target.ToCharArray(), pattern.ToCharArray(), limit);
}
public static int GetDistance(char[] target, char[] pattern, int limit = 20)
{
var currentLeft = new int[limit];
var currentRight = new int[limit];
var lastLeft = new int[limit];
var lastRight = new int[limit];
var priorLeft = new int[limit];
var priorRight = new int[limit];
var targetLength = target.Length;
/*
* Compute the main diagonal number.
* The final result lies on this diagonal.
*/
var main = pattern.Length - targetLength;
/*
* Compute our initial distance candidate.
* The result cannot be less than the difference in
* string lengths, so we start there.
*/
var distance = Math.Abs(main);
if (distance > limit)
{
/* More than we wanted. Give up right away */
return int.MaxValue;
}
/*
* In the main loop below, the current{Right,Left} arrays record results
* from the current outer loop pass. The last{Right,Left} and
* prior{Right,Left} arrays hold the results from the preceding two passes.
* At the end of the outer loop, we shift them around (reusing the prior
* array as the current for the next round, to avoid reallocating).
* The Right reflects higher-numbered diagonals, Left lower-numbered.
*/
/*
* Fill in "prior" values for the first two passes through
* the distance loop. Note that we will execute only one side of
* the main diagonal in these passes, so we only need
* initialize one side of prior values.
*/
if (main <= 0)
{
EnsureCapacityRight(ref currentRight, ref lastRight, ref priorRight, distance, false);
for (var j = 0; j <= distance; j++)
{
lastRight[j] = distance - j - 1; /* Make diagonal -k start in row k */
priorRight[j] = -1;
}
}
else
{
EnsureCapacityLeft(ref currentLeft, ref lastLeft, ref priorLeft, distance, false);
for (var j = 0; j <= distance; j++)
{
lastLeft[j] = -1; /* Make diagonal +k start in row 0 */
priorLeft[j] = -1;
}
}
/*
* Keep track of even rounds. Only those rounds consider new diagonals,
* and thus only they require artificial "last" values below.
*/
var even = true;
/*
* MAIN LOOP: try each successive possible distance until one succeeds.
*/
while (true)
{
/*
* Before calling computeRow(main, distance), we need to fill in
* missing cache elements. See the high-level description above.
*/
/*
* Higher-numbered diagonals
*/
var offDiagonal = (distance - main) / 2;
EnsureCapacityRight(ref currentRight, ref lastRight, ref priorRight, offDiagonal, true);
if (even)
{
/* Higher diagonals start at row 0 */
lastRight[offDiagonal] = -1;
}
var immediateRight = -1;
for (; offDiagonal > 0; offDiagonal--)
{
currentRight[offDiagonal] = immediateRight = ComputeRow(
main + offDiagonal,
distance - offDiagonal,
pattern,
target,
priorRight[offDiagonal - 1],
lastRight[offDiagonal],
immediateRight);
}
/*
* Lower-numbered diagonals
*/
offDiagonal = (distance + main) / 2;
EnsureCapacityLeft(ref currentLeft, ref lastLeft, ref priorLeft, offDiagonal, true);
if (even)
{
/* Lower diagonals, fictitious values for f(-x-1,x) = x */
lastLeft[offDiagonal] = ((distance - main) / 2) - 1;
}
var immediateLeft = even ? -1 : (distance - main) / 2;
for (; offDiagonal > 0; offDiagonal--)
{
currentLeft[offDiagonal] = immediateLeft = ComputeRow(
main - offDiagonal,
distance - offDiagonal,
pattern,
target,
immediateLeft,
lastLeft[offDiagonal],
priorLeft[offDiagonal - 1]);
}
/*
* We are done if the main diagonal has distance in the last row.
*/
var mainRow = ComputeRow(main, distance, pattern, target, immediateLeft, lastLeft[0], immediateRight);
if ((mainRow == targetLength) || (++distance > limit) || (distance < 0))
{
break;
}
/* The [0] element goes to both sides. */
currentLeft[0] = currentRight[0] = mainRow;
/* Rotate rows around for next round: current=>last=>prior (=>current) */
var tmp = priorLeft;
priorLeft = lastLeft;
lastLeft = currentLeft;
currentLeft = priorLeft;
tmp = priorRight;
priorRight = lastRight;
lastRight = currentRight;
currentRight = tmp;
/* Update evenness, too */
even = !even;
}
return distance;
}
/**
* Computes the highest row in which the distance {@code p} appears
* in diagonal {@code k} of the edit distance computation for
* strings {@code a} and {@code b}. The diagonal number is
* represented by the difference in the indices for the two strings;
* it can range from {@code -b.length()} through {@code a.length()}.
*
* More precisely, this computes the highest value x such that
* <pre>
* p = edit-distance(a[0:(x+k)), b[0:x)).
* </pre>
*
* This is the "f" function described by Ukkonen.
*
* The caller must assure that abs(k) &le; p, the only values for
* which this is well-defined.
*
* The implementation depends on the cached results of prior
* computeRow calls for diagonals k-1, k, and k+1 for distance p-1.
* These must be supplied in {@code knownLeft}, {@code knownAbove},
* and {@code knownRight}, respectively.
* @param k diagonal number
* @param p edit distance
* @param a one string to be compared
* @param b other string to be compared
* @param knownLeft value of {@code computeRow(k-1, p-1, ...)}
* @param knownAbove value of {@code computeRow(k, p-1, ...)}
* @param knownRight value of {@code computeRow(k+1, p-1, ...)}
*/
private static int ComputeRow(int k,
int p,
char[] a,
char[] b,
int knownLeft,
int knownAbove,
int knownRight)
{
Debug.Assert(Math.Abs(k) <= p);
Debug.Assert(p >= 0);
/*
* Compute our starting point using the recurrance.
* That is, find the first row where the desired edit distance
* appears in our diagonal. This is at least one past
* the highest row for
*/
int t;
if (p == 0)
{
t = 0;
}
else
{
/*
* We look at the adjacent diagonals for the next lower edit distance.
* We can start in the next row after the prior result from
* our own diagonal (the "substitute" case), or the next diagonal
* ("delete"), but only the same row as the prior result from
* the prior diagonal ("insert").
*/
t = Math.Max(Math.Max(knownAbove, knownRight) + 1, knownLeft);
}
/*
* Look down our diagonal for matches to find the maximum
* row with edit-distance p.
*/
var tmax = Math.Min(b.Length, a.Length - k);
while ((t < tmax) && b[t] == a[t + k])
{
t++;
}
return t;
}
/*
* Ensures that the Left arrays can be indexed through {@code index},
* inclusively, resizing (and copying) as necessary.
*/
private static void EnsureCapacityLeft(ref int[] currentLeft, ref int[] lastLeft, ref int[] priorLeft, int index, bool copy)
{
if (currentLeft.Length <= index)
{
index++;
Resize(ref priorLeft, index, copy);
Resize(ref lastLeft, index, copy);
Resize(ref currentLeft, index, false);
}
}
/*
* Ensures that the Right arrays can be indexed through {@code index},
* inclusively, resizing (and copying) as necessary.
*/
private static void EnsureCapacityRight(ref int[] currentRight, ref int[] lastRight, ref int[] priorRight, int index, bool copy)
{
if (currentRight.Length <= index)
{
index++;
Resize(ref priorRight, index, copy);
Resize(ref lastRight, index, copy);
Resize(ref currentRight, index, false);
}
}
/* Resize an array, copying old contents if requested */
private static void Resize(ref int[] array, int size, bool copy)
{
if (copy)
{
Array.Resize(ref array, size);
}
else
{
array = new int[size];
}
}
}
}

@ -1,4 +1,4 @@
/*
/*
* This file incorporates work covered by the following copyright and
* permission notice:
*
@ -65,7 +65,17 @@ namespace NzbDrone.Common.Extensions
}
// Do a fuzzy compare.
return MatchBitap(text, pattern, matchThreshold);
if (pattern.Length < 32)
{
return MatchBitap(text, pattern, matchThreshold, new IntCalculator());
}
if (pattern.Length < 64)
{
return MatchBitap(text, pattern, matchThreshold, new LongCalculator());
}
return MatchBitap(text, pattern, matchThreshold, new BigIntCalculator());
}
/**
@ -75,38 +85,34 @@ namespace NzbDrone.Common.Extensions
* @param pattern The pattern to search for.
* @return Best match index or -1.
*/
private static Tuple<int, double> MatchBitap(string text, string pattern, double matchThreshold)
private static Tuple<int, double> MatchBitap<T>(string text, string pattern, double matchThreshold, Calculator<T> calculator)
{
// Initialise the alphabet.
Dictionary<char, BigInteger> s = alphabet(pattern);
// don't keep creating new BigInteger(1)
var big1 = new BigInteger(1);
var s = Alphabet(pattern, calculator);
// Lowest score belowe which we give up.
var score_threshold = matchThreshold;
// Lowest score below which we give up.
var scoreThreshold = matchThreshold;
// Initialise the bit arrays.
var matchmask = big1 << (pattern.Length - 1);
int best_loc = -1;
var matchmask = calculator.LeftShift(calculator.One, pattern.Length - 1);
var bestLoc = -1;
// Empty initialization added to appease C# compiler.
var last_rd = new BigInteger[0];
for (int d = 0; d < pattern.Length; d++)
var lastRd = Array.Empty<T>();
for (var d = 0; d < pattern.Length; d++)
{
// Scan for the best match; each iteration allows for one more error.
int start = 1;
int finish = text.Length + pattern.Length;
var start = 1;
var finish = text.Length + pattern.Length;
var rd = new BigInteger[finish + 2];
rd[finish + 1] = (big1 << d) - big1;
for (int j = finish; j >= start; j--)
var rd = new T[finish + 2];
rd[finish + 1] = calculator.Subtract(calculator.LeftShift(calculator.One, d), calculator.One);
for (var j = finish; j >= start; j--)
{
BigInteger charMatch;
T charMatch;
if (text.Length <= j - 1 || !s.ContainsKey(text[j - 1]))
{
// Out of range.
charMatch = 0;
charMatch = calculator.Zero;
}
else
{
@ -116,40 +122,40 @@ namespace NzbDrone.Common.Extensions
if (d == 0)
{
// First pass: exact match.
rd[j] = ((rd[j + 1] << 1) | big1) & charMatch;
rd[j] = calculator.BitwiseAnd(calculator.BitwiseOr(calculator.LeftShift(rd[j + 1], 1), calculator.One), charMatch);
}
else
{
// Subsequent passes: fuzzy match.
rd[j] = ((rd[j + 1] << 1) | big1) & charMatch
| (((last_rd[j + 1] | last_rd[j]) << 1) | big1) | last_rd[j + 1];
rd[j] = calculator.BitwiseOr(calculator.BitwiseAnd(calculator.BitwiseOr(calculator.LeftShift(rd[j + 1], 1), calculator.One), charMatch),
calculator.BitwiseOr(calculator.BitwiseOr(calculator.LeftShift(calculator.BitwiseOr(lastRd[j + 1], lastRd[j]), 1), calculator.One), lastRd[j + 1]));
}
if ((rd[j] & matchmask) != 0)
if (calculator.NotEqual(calculator.BitwiseAnd(rd[j], matchmask), calculator.Zero))
{
var score = bitapScore(d, pattern);
var score = BitapScore(d, pattern);
// This match will almost certainly be better than any existing
// match. But check anyway.
if (score >= score_threshold)
if (score >= scoreThreshold)
{
// Told you so.
score_threshold = score;
best_loc = j - 1;
scoreThreshold = score;
bestLoc = j - 1;
}
}
}
if (bitapScore(d + 1, pattern) < score_threshold)
if (BitapScore(d + 1, pattern) < scoreThreshold)
{
// No hope for a (better) match at greater error levels.
break;
}
last_rd = rd;
lastRd = rd;
}
return new Tuple<int, double>(best_loc, score_threshold);
return new Tuple<int, double>(bestLoc, scoreThreshold);
}
/**
@ -158,7 +164,7 @@ namespace NzbDrone.Common.Extensions
* @param pattern Pattern being sought.
* @return Overall score for match (1.0 = good, 0.0 = bad).
*/
private static double bitapScore(int e, string pattern)
private static double BitapScore(int e, string pattern)
{
return 1.0 - ((double)e / pattern.Length);
}
@ -168,26 +174,70 @@ namespace NzbDrone.Common.Extensions
* @param pattern The text to encode.
* @return Hash of character locations.
*/
private static Dictionary<char, BigInteger> alphabet(string pattern)
private static Dictionary<char, T> Alphabet<T>(string pattern, Calculator<T> calculator)
{
var s = new Dictionary<char, BigInteger>();
char[] char_pattern = pattern.ToCharArray();
foreach (char c in char_pattern)
var s = new Dictionary<char, T>();
var charPattern = pattern.ToCharArray();
foreach (var c in charPattern)
{
if (!s.ContainsKey(c))
{
s.Add(c, 0);
s.Add(c, calculator.Zero);
}
}
int i = 0;
foreach (char c in char_pattern)
var i = 0;
foreach (var c in charPattern)
{
s[c] = s[c] | (new BigInteger(1) << (pattern.Length - i - 1));
s[c] = calculator.BitwiseOr(s[c], calculator.LeftShift(calculator.One, pattern.Length - i - 1));
i++;
}
return s;
}
private abstract class Calculator<T>
{
public abstract T Zero { get; }
public abstract T One { get; }
public abstract T Subtract(T a, T b);
public abstract T LeftShift(T a, int shift);
public abstract T BitwiseOr(T a, T b);
public abstract T BitwiseAnd(T a, T b);
public abstract bool NotEqual(T a, T b);
}
private sealed class BigIntCalculator : Calculator<BigInteger>
{
public override BigInteger Zero => new BigInteger(0);
public override BigInteger One => new BigInteger(1);
public override BigInteger Subtract(BigInteger a, BigInteger b) => a - b;
public override BigInteger LeftShift(BigInteger a, int shift) => a << shift;
public override BigInteger BitwiseOr(BigInteger a, BigInteger b) => a | b;
public override BigInteger BitwiseAnd(BigInteger a, BigInteger b) => a & b;
public override bool NotEqual(BigInteger a, BigInteger b) => a != b;
}
private sealed class IntCalculator : Calculator<int>
{
public override int Zero => 0;
public override int One => 1;
public override int Subtract(int a, int b) => a - b;
public override int LeftShift(int a, int shift) => a << shift;
public override int BitwiseOr(int a, int b) => a | b;
public override int BitwiseAnd(int a, int b) => a & b;
public override bool NotEqual(int a, int b) => a != b;
}
private sealed class LongCalculator : Calculator<long>
{
public override long Zero => 0;
public override long One => 1;
public override long Subtract(long a, long b) => a - b;
public override long LeftShift(long a, int shift) => a << shift;
public override long BitwiseOr(long a, long b) => a | b;
public override long BitwiseAnd(long a, long b) => a & b;
public override bool NotEqual(long a, long b) => a != b;
}
}
}

@ -1,61 +0,0 @@
using System;
namespace NzbDrone.Common.Extensions
{
public static class LevenstheinExtensions
{
public static int LevenshteinDistance(this string text, string other, int costInsert = 1, int costDelete = 1, int costSubstitute = 1)
{
if (text == other)
{
return 0;
}
if (text.Length == 0)
{
return other.Length * costInsert;
}
if (other.Length == 0)
{
return text.Length * costDelete;
}
int[] matrix = new int[other.Length + 1];
for (var i = 1; i < matrix.Length; i++)
{
matrix[i] = i * costInsert;
}
for (var i = 0; i < text.Length; i++)
{
int topLeft = matrix[0];
matrix[0] = matrix[0] + costDelete;
for (var j = 0; j < other.Length; j++)
{
int top = matrix[j];
int left = matrix[j + 1];
var sumIns = top + costInsert;
var sumDel = left + costDelete;
var sumSub = topLeft + (text[i] == other[j] ? 0 : costSubstitute);
topLeft = matrix[j + 1];
matrix[j + 1] = Math.Min(Math.Min(sumIns, sumDel), sumSub);
}
}
return matrix[other.Length];
}
public static int LevenshteinDistanceClean(this string expected, string other)
{
expected = expected.ToLower().Replace(".", "");
other = other.ToLower().Replace(".", "");
return expected.LevenshteinDistance(other, 1, 3, 3);
}
}
}

@ -1,71 +0,0 @@
using System.Collections.Generic;
using System.Linq;
using FluentAssertions;
using NUnit.Framework;
using NzbDrone.Core.Books;
using NzbDrone.Core.MetadataSource;
using NzbDrone.Core.Test.Framework;
namespace NzbDrone.Core.Test.MetadataSource
{
[TestFixture]
public class SearchAuthorComparerFixture : CoreTest
{
private List<Author> _author;
[SetUp]
public void Setup()
{
_author = new List<Author>();
}
private void WithSeries(string name)
{
_author.Add(new Author { Name = name });
}
[Test]
public void should_prefer_the_walking_dead_over_talking_dead_when_searching_for_the_walking_dead()
{
WithSeries("Talking Dead");
WithSeries("The Walking Dead");
_author.Sort(new SearchAuthorComparer("the walking dead"));
_author.First().Name.Should().Be("The Walking Dead");
}
[Test]
public void should_prefer_the_walking_dead_over_talking_dead_when_searching_for_walking_dead()
{
WithSeries("Talking Dead");
WithSeries("The Walking Dead");
_author.Sort(new SearchAuthorComparer("walking dead"));
_author.First().Name.Should().Be("The Walking Dead");
}
[Test]
public void should_prefer_blacklist_over_the_blacklist_when_searching_for_blacklist()
{
WithSeries("The Blacklist");
WithSeries("Blacklist");
_author.Sort(new SearchAuthorComparer("blacklist"));
_author.First().Name.Should().Be("Blacklist");
}
[Test]
public void should_prefer_the_blacklist_over_blacklist_when_searching_for_the_blacklist()
{
WithSeries("Blacklist");
WithSeries("The Blacklist");
_author.Sort(new SearchAuthorComparer("the blacklist"));
_author.First().Name.Should().Be("The Blacklist");
}
}
}

@ -34,10 +34,8 @@ namespace NzbDrone.Core.Test.MusicTests.AuthorServiceTests
.Returns(_authors);
}
[TestCase("The Black Eyde Peas", "The Black Eyed Peas")]
[TestCase("Black Eyed Peas", "The Black Eyed Peas")]
[TestCase("The Black Eyd Peas", "The Black Eyed Peas")]
[TestCase("The Black eys", "The Black Keys")]
[TestCase("Black Keys", "The Black Keys")]
public void should_find_author_in_db_by_name_inexact(string name, string expected)
{
var author = Subject.FindByNameInexact(name);
@ -46,20 +44,6 @@ namespace NzbDrone.Core.Test.MusicTests.AuthorServiceTests
author.Name.Should().Be(expected);
}
[Test]
public void should_find_author_when_the_is_omitted_from_start()
{
_authors = new List<Author>();
_authors.Add(CreateAuthor("Black Keys"));
_authors.Add(CreateAuthor("The Black Eyed Peas"));
Mocker.GetMock<IAuthorRepository>()
.Setup(s => s.All())
.Returns(_authors);
Subject.FindByNameInexact("The Black Keys").Should().NotBeNull();
}
[TestCase("The Black Peas")]
public void should_not_find_author_in_db_by_ambiguous_name(string name)
{

@ -99,21 +99,10 @@ namespace NzbDrone.Core.Books
Func<Func<Author, string, double>, string, Tuple<Func<Author, string, double>, string>> tc = Tuple.Create;
var scoringFunctions = new List<Tuple<Func<Author, string, double>, string>>
{
tc((a, t) => a.CleanName.FuzzyMatch(t), cleanTitle),
tc((a, t) => a.Name.FuzzyMatch(t), title),
tc((a, t) => a.Name.ToLastFirst().FuzzyMatch(t), title),
tc((a, t) => a.Metadata.Value.Aliases.Concat(new List<string> { a.Name }).Max(x => x.CleanAuthorName().FuzzyMatch(t)), cleanTitle),
tc((a, t) => a.Metadata.Value.Name.FuzzyMatch(t), title),
tc((a, t) => a.Metadata.Value.NameLastFirst.FuzzyMatch(t), title)
};
if (title.StartsWith("The ", StringComparison.CurrentCultureIgnoreCase))
{
scoringFunctions.Add(tc((a, t) => a.CleanName.FuzzyMatch(t), title.Substring(4).CleanAuthorName()));
}
else
{
scoringFunctions.Add(tc((a, t) => a.CleanName.FuzzyMatch(t), "the" + cleanTitle));
}
return scoringFunctions;
}
@ -151,9 +140,8 @@ namespace NzbDrone.Core.Books
Func<Func<Author, string, double>, string, Tuple<Func<Author, string, double>, string>> tc = Tuple.Create;
var scoringFunctions = new List<Tuple<Func<Author, string, double>, string>>
{
tc((a, t) => t.FuzzyContains(a.CleanName), cleanReportTitle),
tc((a, t) => t.FuzzyContains(a.Metadata.Value.Name), reportTitle),
tc((a, t) => t.FuzzyContains(a.Metadata.Value.Name.ToLastFirst()), reportTitle)
tc((a, t) => t.FuzzyContains(a.Metadata.Value.NameLastFirst), reportTitle)
};
return scoringFunctions;

@ -1,95 +0,0 @@
using System;
using System.Collections.Generic;
using System.Text.RegularExpressions;
using NzbDrone.Common.Extensions;
using NzbDrone.Core.Books;
namespace NzbDrone.Core.MetadataSource
{
public class SearchAuthorComparer : IComparer<Author>
{
private static readonly Regex RegexCleanPunctuation = new Regex("[-._:]", RegexOptions.Compiled);
private static readonly Regex RegexCleanCountryYearPostfix = new Regex(@"(?<=.+)( \([A-Z]{2}\)| \(\d{4}\)| \([A-Z]{2}\) \(\d{4}\))$", RegexOptions.Compiled);
private static readonly Regex ArticleRegex = new Regex(@"^(a|an|the)\s", RegexOptions.IgnoreCase | RegexOptions.Compiled);
public string SearchQuery { get; private set; }
private readonly string _searchQueryWithoutYear;
private int? _year;
public SearchAuthorComparer(string searchQuery)
{
SearchQuery = searchQuery;
var match = Regex.Match(SearchQuery, @"^(?<query>.+)\s+(?:\((?<year>\d{4})\)|(?<year>\d{4}))$");
if (match.Success)
{
_searchQueryWithoutYear = match.Groups["query"].Value.ToLowerInvariant();
_year = int.Parse(match.Groups["year"].Value);
}
else
{
_searchQueryWithoutYear = searchQuery.ToLowerInvariant();
}
}
public int Compare(Author x, Author y)
{
int result = 0;
// Prefer exact matches
result = Compare(x, y, s => CleanPunctuation(s.Name).Equals(CleanPunctuation(SearchQuery)));
if (result != 0)
{
return -result;
}
// Remove Articles (a/an/the)
result = Compare(x, y, s => CleanArticles(s.Name).Equals(CleanArticles(SearchQuery)));
if (result != 0)
{
return -result;
}
// Prefer close matches
result = Compare(x, y, s => CleanPunctuation(s.Name).LevenshteinDistance(CleanPunctuation(SearchQuery)) <= 1);
if (result != 0)
{
return -result;
}
return Compare(x, y, s => SearchQuery.LevenshteinDistanceClean(s.Name));
}
public int Compare<T>(Author x, Author y, Func<Author, T> keySelector)
where T : IComparable<T>
{
var keyX = keySelector(x);
var keyY = keySelector(y);
return keyX.CompareTo(keyY);
}
private string CleanPunctuation(string title)
{
title = RegexCleanPunctuation.Replace(title, "");
return title.ToLowerInvariant();
}
private string CleanTitle(string title)
{
title = RegexCleanPunctuation.Replace(title, "");
title = RegexCleanCountryYearPostfix.Replace(title, "");
return title.ToLowerInvariant();
}
private string CleanArticles(string title)
{
title = ArticleRegex.Replace(title, "");
return title.Trim().ToLowerInvariant();
}
}
}
Loading…
Cancel
Save