You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
bazarr/libs/sqlalchemy/sql/dml.py

1784 lines
62 KiB

# sql/dml.py
# Copyright (C) 2009-2023 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: https://www.opensource.org/licenses/mit-license.php
"""
Provide :class:`_expression.Insert`, :class:`_expression.Update` and
:class:`_expression.Delete`.
"""
from __future__ import annotations
import collections.abc as collections_abc
import operator
from typing import Any
from typing import cast
from typing import Dict
from typing import Iterable
from typing import List
from typing import MutableMapping
from typing import NoReturn
from typing import Optional
from typing import overload
from typing import Sequence
from typing import Tuple
from typing import Type
from typing import TYPE_CHECKING
from typing import TypeVar
from typing import Union
from . import coercions
from . import roles
from . import util as sql_util
from ._typing import _no_kw
from ._typing import _TP
from ._typing import is_column_element
from ._typing import is_named_from_clause
from .base import _entity_namespace_key
from .base import _exclusive_against
from .base import _from_objects
from .base import _generative
from .base import _select_iterables
from .base import ColumnCollection
from .base import CompileState
from .base import DialectKWArgs
from .base import Executable
from .base import Generative
from .base import HasCompileState
from .elements import BooleanClauseList
from .elements import ClauseElement
from .elements import ColumnClause
from .elements import ColumnElement
from .elements import Null
from .selectable import Alias
from .selectable import ExecutableReturnsRows
from .selectable import FromClause
from .selectable import HasCTE
from .selectable import HasPrefixes
from .selectable import Join
from .selectable import SelectLabelStyle
from .selectable import TableClause
from .selectable import TypedReturnsRows
from .sqltypes import NullType
from .visitors import InternalTraversal
from .. import exc
from .. import util
from ..util.typing import Self
from ..util.typing import TypeGuard
if TYPE_CHECKING:
from ._typing import _ColumnExpressionArgument
from ._typing import _ColumnsClauseArgument
from ._typing import _DMLColumnArgument
from ._typing import _DMLColumnKeyMapping
from ._typing import _DMLTableArgument
from ._typing import _T0 # noqa
from ._typing import _T1 # noqa
from ._typing import _T2 # noqa
from ._typing import _T3 # noqa
from ._typing import _T4 # noqa
from ._typing import _T5 # noqa
from ._typing import _T6 # noqa
from ._typing import _T7 # noqa
from ._typing import _TypedColumnClauseArgument as _TCCA # noqa
from .base import ReadOnlyColumnCollection
from .compiler import SQLCompiler
from .elements import KeyedColumnElement
from .selectable import _ColumnsClauseElement
from .selectable import _SelectIterable
from .selectable import Select
from .selectable import Selectable
def isupdate(dml: DMLState) -> TypeGuard[UpdateDMLState]:
...
def isdelete(dml: DMLState) -> TypeGuard[DeleteDMLState]:
...
def isinsert(dml: DMLState) -> TypeGuard[InsertDMLState]:
...
else:
isupdate = operator.attrgetter("isupdate")
isdelete = operator.attrgetter("isdelete")
isinsert = operator.attrgetter("isinsert")
_T = TypeVar("_T", bound=Any)
_DMLColumnElement = Union[str, ColumnClause[Any]]
_DMLTableElement = Union[TableClause, Alias, Join]
class DMLState(CompileState):
_no_parameters = True
_dict_parameters: Optional[MutableMapping[_DMLColumnElement, Any]] = None
_multi_parameters: Optional[
List[MutableMapping[_DMLColumnElement, Any]]
] = None
_ordered_values: Optional[List[Tuple[_DMLColumnElement, Any]]] = None
_parameter_ordering: Optional[List[_DMLColumnElement]] = None
_primary_table: FromClause
_supports_implicit_returning = True
isupdate = False
isdelete = False
isinsert = False
statement: UpdateBase
def __init__(
self, statement: UpdateBase, compiler: SQLCompiler, **kw: Any
):
raise NotImplementedError()
@classmethod
def get_entity_description(cls, statement: UpdateBase) -> Dict[str, Any]:
return {
"name": statement.table.name
if is_named_from_clause(statement.table)
else None,
"table": statement.table,
}
@classmethod
def get_returning_column_descriptions(
cls, statement: UpdateBase
) -> List[Dict[str, Any]]:
return [
{
"name": c.key,
"type": c.type,
"expr": c,
}
for c in statement._all_selected_columns
]
@property
def dml_table(self) -> _DMLTableElement:
return self.statement.table
if TYPE_CHECKING:
@classmethod
def get_plugin_class(cls, statement: Executable) -> Type[DMLState]:
...
@classmethod
def _get_multi_crud_kv_pairs(
cls,
statement: UpdateBase,
multi_kv_iterator: Iterable[Dict[_DMLColumnArgument, Any]],
) -> List[Dict[_DMLColumnElement, Any]]:
return [
{
coercions.expect(roles.DMLColumnRole, k): v
for k, v in mapping.items()
}
for mapping in multi_kv_iterator
]
@classmethod
def _get_crud_kv_pairs(
cls,
statement: UpdateBase,
kv_iterator: Iterable[Tuple[_DMLColumnArgument, Any]],
needs_to_be_cacheable: bool,
) -> List[Tuple[_DMLColumnElement, Any]]:
return [
(
coercions.expect(roles.DMLColumnRole, k),
v
if not needs_to_be_cacheable
else coercions.expect(
roles.ExpressionElementRole,
v,
type_=NullType(),
is_crud=True,
),
)
for k, v in kv_iterator
]
def _make_extra_froms(
self, statement: DMLWhereBase
) -> Tuple[FromClause, List[FromClause]]:
froms: List[FromClause] = []
all_tables = list(sql_util.tables_from_leftmost(statement.table))
primary_table = all_tables[0]
seen = {primary_table}
for crit in statement._where_criteria:
for item in _from_objects(crit):
if not seen.intersection(item._cloned_set):
froms.append(item)
seen.update(item._cloned_set)
froms.extend(all_tables[1:])
return primary_table, froms
def _process_values(self, statement: ValuesBase) -> None:
if self._no_parameters:
self._dict_parameters = statement._values
self._no_parameters = False
def _process_select_values(self, statement: ValuesBase) -> None:
assert statement._select_names is not None
parameters: MutableMapping[_DMLColumnElement, Any] = {
coercions.expect(roles.DMLColumnRole, name, as_key=True): Null()
for name in statement._select_names
}
if self._no_parameters:
self._no_parameters = False
self._dict_parameters = parameters
else:
# this condition normally not reachable as the Insert
# does not allow this construction to occur
assert False, "This statement already has parameters"
def _no_multi_values_supported(self, statement: ValuesBase) -> NoReturn:
raise exc.InvalidRequestError(
"%s construct does not support "
"multiple parameter sets." % statement.__visit_name__.upper()
)
def _cant_mix_formats_error(self) -> NoReturn:
raise exc.InvalidRequestError(
"Can't mix single and multiple VALUES "
"formats in one INSERT statement; one style appends to a "
"list while the other replaces values, so the intent is "
"ambiguous."
)
@CompileState.plugin_for("default", "insert")
class InsertDMLState(DMLState):
isinsert = True
include_table_with_column_exprs = False
_has_multi_parameters = False
def __init__(
self,
statement: Insert,
compiler: SQLCompiler,
disable_implicit_returning: bool = False,
**kw: Any,
):
self.statement = statement
self._primary_table = statement.table
if disable_implicit_returning:
self._supports_implicit_returning = False
self.isinsert = True
if statement._select_names:
self._process_select_values(statement)
if statement._values is not None:
self._process_values(statement)
if statement._multi_values:
self._process_multi_values(statement)
@util.memoized_property
def _insert_col_keys(self) -> List[str]:
# this is also done in crud.py -> _key_getters_for_crud_column
return [
coercions.expect(roles.DMLColumnRole, col, as_key=True)
for col in self._dict_parameters or ()
]
def _process_values(self, statement: ValuesBase) -> None:
if self._no_parameters:
self._has_multi_parameters = False
self._dict_parameters = statement._values
self._no_parameters = False
elif self._has_multi_parameters:
self._cant_mix_formats_error()
def _process_multi_values(self, statement: ValuesBase) -> None:
for parameters in statement._multi_values:
multi_parameters: List[MutableMapping[_DMLColumnElement, Any]] = [
{
c.key: value
for c, value in zip(statement.table.c, parameter_set)
}
if isinstance(parameter_set, collections_abc.Sequence)
else parameter_set
for parameter_set in parameters
]
if self._no_parameters:
self._no_parameters = False
self._has_multi_parameters = True
self._multi_parameters = multi_parameters
self._dict_parameters = self._multi_parameters[0]
elif not self._has_multi_parameters:
self._cant_mix_formats_error()
else:
assert self._multi_parameters
self._multi_parameters.extend(multi_parameters)
@CompileState.plugin_for("default", "update")
class UpdateDMLState(DMLState):
isupdate = True
include_table_with_column_exprs = False
def __init__(self, statement: Update, compiler: SQLCompiler, **kw: Any):
self.statement = statement
self.isupdate = True
if statement._ordered_values is not None:
self._process_ordered_values(statement)
elif statement._values is not None:
self._process_values(statement)
elif statement._multi_values:
self._no_multi_values_supported(statement)
t, ef = self._make_extra_froms(statement)
self._primary_table = t
self._extra_froms = ef
self.is_multitable = mt = ef
self.include_table_with_column_exprs = bool(
mt and compiler.render_table_with_column_in_update_from
)
def _process_ordered_values(self, statement: ValuesBase) -> None:
parameters = statement._ordered_values
if self._no_parameters:
self._no_parameters = False
assert parameters is not None
self._dict_parameters = dict(parameters)
self._ordered_values = parameters
self._parameter_ordering = [key for key, value in parameters]
else:
raise exc.InvalidRequestError(
"Can only invoke ordered_values() once, and not mixed "
"with any other values() call"
)
@CompileState.plugin_for("default", "delete")
class DeleteDMLState(DMLState):
isdelete = True
def __init__(self, statement: Delete, compiler: SQLCompiler, **kw: Any):
self.statement = statement
self.isdelete = True
t, ef = self._make_extra_froms(statement)
self._primary_table = t
self._extra_froms = ef
self.is_multitable = ef
class UpdateBase(
roles.DMLRole,
HasCTE,
HasCompileState,
DialectKWArgs,
HasPrefixes,
Generative,
ExecutableReturnsRows,
ClauseElement,
):
"""Form the base for ``INSERT``, ``UPDATE``, and ``DELETE`` statements."""
__visit_name__ = "update_base"
_hints: util.immutabledict[
Tuple[_DMLTableElement, str], str
] = util.EMPTY_DICT
named_with_column = False
_label_style: SelectLabelStyle = (
SelectLabelStyle.LABEL_STYLE_DISAMBIGUATE_ONLY
)
table: _DMLTableElement
_return_defaults = False
_return_defaults_columns: Optional[
Tuple[_ColumnsClauseElement, ...]
] = None
_supplemental_returning: Optional[Tuple[_ColumnsClauseElement, ...]] = None
_returning: Tuple[_ColumnsClauseElement, ...] = ()
is_dml = True
def _generate_fromclause_column_proxies(
self, fromclause: FromClause
) -> None:
fromclause._columns._populate_separate_keys(
col._make_proxy(fromclause)
for col in self._all_selected_columns
if is_column_element(col)
)
def params(self, *arg: Any, **kw: Any) -> NoReturn:
"""Set the parameters for the statement.
This method raises ``NotImplementedError`` on the base class,
and is overridden by :class:`.ValuesBase` to provide the
SET/VALUES clause of UPDATE and INSERT.
"""
raise NotImplementedError(
"params() is not supported for INSERT/UPDATE/DELETE statements."
" To set the values for an INSERT or UPDATE statement, use"
" stmt.values(**parameters)."
)
@_generative
def with_dialect_options(self, **opt: Any) -> Self:
"""Add dialect options to this INSERT/UPDATE/DELETE object.
e.g.::
upd = table.update().dialect_options(mysql_limit=10)
.. versionadded: 1.4 - this method supersedes the dialect options
associated with the constructor.
"""
self._validate_dialect_kwargs(opt)
return self
@_generative
def return_defaults(
self,
*cols: _DMLColumnArgument,
supplemental_cols: Optional[Iterable[_DMLColumnArgument]] = None,
) -> Self:
"""Make use of a :term:`RETURNING` clause for the purpose
of fetching server-side expressions and defaults, for supporting
backends only.
.. deepalchemy::
The :meth:`.UpdateBase.return_defaults` method is used by the ORM
for its internal work in fetching newly generated primary key
and server default values, in particular to provide the underyling
implementation of the :paramref:`_orm.Mapper.eager_defaults`
ORM feature as well as to allow RETURNING support with bulk
ORM inserts. Its behavior is fairly idiosyncratic
and is not really intended for general use. End users should
stick with using :meth:`.UpdateBase.returning` in order to
add RETURNING clauses to their INSERT, UPDATE and DELETE
statements.
Normally, a single row INSERT statement will automatically populate the
:attr:`.CursorResult.inserted_primary_key` attribute when executed,
which stores the primary key of the row that was just inserted in the
form of a :class:`.Row` object with column names as named tuple keys
(and the :attr:`.Row._mapping` view fully populated as well). The
dialect in use chooses the strategy to use in order to populate this
data; if it was generated using server-side defaults and / or SQL
expressions, dialect-specific approaches such as ``cursor.lastrowid``
or ``RETURNING`` are typically used to acquire the new primary key
value.
However, when the statement is modified by calling
:meth:`.UpdateBase.return_defaults` before executing the statement,
additional behaviors take place **only** for backends that support
RETURNING and for :class:`.Table` objects that maintain the
:paramref:`.Table.implicit_returning` parameter at its default value of
``True``. In these cases, when the :class:`.CursorResult` is returned
from the statement's execution, not only will
:attr:`.CursorResult.inserted_primary_key` be populated as always, the
:attr:`.CursorResult.returned_defaults` attribute will also be
populated with a :class:`.Row` named-tuple representing the full range
of server generated
values from that single row, including values for any columns that
specify :paramref:`_schema.Column.server_default` or which make use of
:paramref:`_schema.Column.default` using a SQL expression.
When invoking INSERT statements with multiple rows using
:ref:`insertmanyvalues <engine_insertmanyvalues>`, the
:meth:`.UpdateBase.return_defaults` modifier will have the effect of
the :attr:`_engine.CursorResult.inserted_primary_key_rows` and
:attr:`_engine.CursorResult.returned_defaults_rows` attributes being
fully populated with lists of :class:`.Row` objects representing newly
inserted primary key values as well as newly inserted server generated
values for each row inserted. The
:attr:`.CursorResult.inserted_primary_key` and
:attr:`.CursorResult.returned_defaults` attributes will also continue
to be populated with the first row of these two collections.
If the backend does not support RETURNING or the :class:`.Table` in use
has disabled :paramref:`.Table.implicit_returning`, then no RETURNING
clause is added and no additional data is fetched, however the
INSERT, UPDATE or DELETE statement proceeds normally.
E.g.::
stmt = table.insert().values(data='newdata').return_defaults()
result = connection.execute(stmt)
server_created_at = result.returned_defaults['created_at']
When used against an UPDATE statement
:meth:`.UpdateBase.return_defaults` instead looks for columns that
include :paramref:`_schema.Column.onupdate` or
:paramref:`_schema.Column.server_onupdate` parameters assigned, when
constructing the columns that will be included in the RETURNING clause
by default if explicit columns were not specified. When used against a
DELETE statement, no columns are included in RETURNING by default, they
instead must be specified explicitly as there are no columns that
normally change values when a DELETE statement proceeds.
.. versionadded:: 2.0 :meth:`.UpdateBase.return_defaults` is supported
for DELETE statements also and has been moved from
:class:`.ValuesBase` to :class:`.UpdateBase`.
The :meth:`.UpdateBase.return_defaults` method is mutually exclusive
against the :meth:`.UpdateBase.returning` method and errors will be
raised during the SQL compilation process if both are used at the same
time on one statement. The RETURNING clause of the INSERT, UPDATE or
DELETE statement is therefore controlled by only one of these methods
at a time.
The :meth:`.UpdateBase.return_defaults` method differs from
:meth:`.UpdateBase.returning` in these ways:
1. :meth:`.UpdateBase.return_defaults` method causes the
:attr:`.CursorResult.returned_defaults` collection to be populated
with the first row from the RETURNING result. This attribute is not
populated when using :meth:`.UpdateBase.returning`.
2. :meth:`.UpdateBase.return_defaults` is compatible with existing
logic used to fetch auto-generated primary key values that are then
populated into the :attr:`.CursorResult.inserted_primary_key`
attribute. By contrast, using :meth:`.UpdateBase.returning` will
have the effect of the :attr:`.CursorResult.inserted_primary_key`
attribute being left unpopulated.
3. :meth:`.UpdateBase.return_defaults` can be called against any
backend. Backends that don't support RETURNING will skip the usage
of the feature, rather than raising an exception. The return value
of :attr:`_engine.CursorResult.returned_defaults` will be ``None``
for backends that don't support RETURNING or for which the target
:class:`.Table` sets :paramref:`.Table.implicit_returning` to
``False``.
4. An INSERT statement invoked with executemany() is supported if the
backend database driver supports the
:ref:`insertmanyvalues <engine_insertmanyvalues>`
feature which is now supported by most SQLAlchemy-included backends.
When executemany is used, the
:attr:`_engine.CursorResult.returned_defaults_rows` and
:attr:`_engine.CursorResult.inserted_primary_key_rows` accessors
will return the inserted defaults and primary keys.
.. versionadded:: 1.4 Added
:attr:`_engine.CursorResult.returned_defaults_rows` and
:attr:`_engine.CursorResult.inserted_primary_key_rows` accessors.
In version 2.0, the underlying implementation which fetches and
populates the data for these attributes was generalized to be
supported by most backends, whereas in 1.4 they were only
supported by the ``psycopg2`` driver.
:param cols: optional list of column key names or
:class:`_schema.Column` that acts as a filter for those columns that
will be fetched.
:param supplemental_cols: optional list of RETURNING expressions,
in the same form as one would pass to the
:meth:`.UpdateBase.returning` method. When present, the additional
columns will be included in the RETURNING clause, and the
:class:`.CursorResult` object will be "rewound" when returned, so
that methods like :meth:`.CursorResult.all` will return new rows
mostly as though the statement used :meth:`.UpdateBase.returning`
directly. However, unlike when using :meth:`.UpdateBase.returning`
directly, the **order of the columns is undefined**, so can only be
targeted using names or :attr:`.Row._mapping` keys; they cannot
reliably be targeted positionally.
.. versionadded:: 2.0
.. seealso::
:meth:`.UpdateBase.returning`
:attr:`_engine.CursorResult.returned_defaults`
:attr:`_engine.CursorResult.returned_defaults_rows`
:attr:`_engine.CursorResult.inserted_primary_key`
:attr:`_engine.CursorResult.inserted_primary_key_rows`
"""
if self._return_defaults:
# note _return_defaults_columns = () means return all columns,
# so if we have been here before, only update collection if there
# are columns in the collection
if self._return_defaults_columns and cols:
self._return_defaults_columns = tuple(
util.OrderedSet(self._return_defaults_columns).union(
coercions.expect(roles.ColumnsClauseRole, c)
for c in cols
)
)
else:
# set for all columns
self._return_defaults_columns = ()
else:
self._return_defaults_columns = tuple(
coercions.expect(roles.ColumnsClauseRole, c) for c in cols
)
self._return_defaults = True
if supplemental_cols:
# uniquifying while also maintaining order (the maintain of order
# is for test suites but also for vertical splicing
supplemental_col_tup = (
coercions.expect(roles.ColumnsClauseRole, c)
for c in supplemental_cols
)
if self._supplemental_returning is None:
self._supplemental_returning = tuple(
util.unique_list(supplemental_col_tup)
)
else:
self._supplemental_returning = tuple(
util.unique_list(
self._supplemental_returning
+ tuple(supplemental_col_tup)
)
)
return self
@_generative
def returning(
self, *cols: _ColumnsClauseArgument[Any], **__kw: Any
) -> UpdateBase:
r"""Add a :term:`RETURNING` or equivalent clause to this statement.
e.g.:
.. sourcecode:: pycon+sql
>>> stmt = (
... table.update()
... .where(table.c.data == "value")
... .values(status="X")
... .returning(table.c.server_flag, table.c.updated_timestamp)
... )
>>> print(stmt)
{printsql}UPDATE some_table SET status=:status
WHERE some_table.data = :data_1
RETURNING some_table.server_flag, some_table.updated_timestamp
The method may be invoked multiple times to add new entries to the
list of expressions to be returned.
.. versionadded:: 1.4.0b2 The method may be invoked multiple times to
add new entries to the list of expressions to be returned.
The given collection of column expressions should be derived from the
table that is the target of the INSERT, UPDATE, or DELETE. While
:class:`_schema.Column` objects are typical, the elements can also be
expressions:
.. sourcecode:: pycon+sql
>>> stmt = table.insert().returning(
... (table.c.first_name + " " + table.c.last_name).label("fullname")
... )
>>> print(stmt)
{printsql}INSERT INTO some_table (first_name, last_name)
VALUES (:first_name, :last_name)
RETURNING some_table.first_name || :first_name_1 || some_table.last_name AS fullname
Upon compilation, a RETURNING clause, or database equivalent,
will be rendered within the statement. For INSERT and UPDATE,
the values are the newly inserted/updated values. For DELETE,
the values are those of the rows which were deleted.
Upon execution, the values of the columns to be returned are made
available via the result set and can be iterated using
:meth:`_engine.CursorResult.fetchone` and similar.
For DBAPIs which do not
natively support returning values (i.e. cx_oracle), SQLAlchemy will
approximate this behavior at the result level so that a reasonable
amount of behavioral neutrality is provided.
Note that not all databases/DBAPIs
support RETURNING. For those backends with no support,
an exception is raised upon compilation and/or execution.
For those who do support it, the functionality across backends
varies greatly, including restrictions on executemany()
and other statements which return multiple rows. Please
read the documentation notes for the database in use in
order to determine the availability of RETURNING.
.. seealso::
:meth:`.UpdateBase.return_defaults` - an alternative method tailored
towards efficient fetching of server-side defaults and triggers
for single-row INSERTs or UPDATEs.
:ref:`tutorial_insert_returning` - in the :ref:`unified_tutorial`
""" # noqa: E501
if __kw:
raise _no_kw()
if self._return_defaults:
raise exc.InvalidRequestError(
"return_defaults() is already configured on this statement"
)
self._returning += tuple(
coercions.expect(roles.ColumnsClauseRole, c) for c in cols
)
return self
def corresponding_column(
self, column: KeyedColumnElement[Any], require_embedded: bool = False
) -> Optional[ColumnElement[Any]]:
return self.exported_columns.corresponding_column(
column, require_embedded=require_embedded
)
@util.ro_memoized_property
def _all_selected_columns(self) -> _SelectIterable:
return [c for c in _select_iterables(self._returning)]
@util.ro_memoized_property
def exported_columns(
self,
) -> ReadOnlyColumnCollection[Optional[str], ColumnElement[Any]]:
"""Return the RETURNING columns as a column collection for this
statement.
.. versionadded:: 1.4
"""
return ColumnCollection(
(c.key, c)
for c in self._all_selected_columns
if is_column_element(c)
).as_readonly()
@_generative
def with_hint(
self,
text: str,
selectable: Optional[_DMLTableArgument] = None,
dialect_name: str = "*",
) -> Self:
"""Add a table hint for a single table to this
INSERT/UPDATE/DELETE statement.
.. note::
:meth:`.UpdateBase.with_hint` currently applies only to
Microsoft SQL Server. For MySQL INSERT/UPDATE/DELETE hints, use
:meth:`.UpdateBase.prefix_with`.
The text of the hint is rendered in the appropriate
location for the database backend in use, relative
to the :class:`_schema.Table` that is the subject of this
statement, or optionally to that of the given
:class:`_schema.Table` passed as the ``selectable`` argument.
The ``dialect_name`` option will limit the rendering of a particular
hint to a particular backend. Such as, to add a hint
that only takes effect for SQL Server::
mytable.insert().with_hint("WITH (PAGLOCK)", dialect_name="mssql")
:param text: Text of the hint.
:param selectable: optional :class:`_schema.Table` that specifies
an element of the FROM clause within an UPDATE or DELETE
to be the subject of the hint - applies only to certain backends.
:param dialect_name: defaults to ``*``, if specified as the name
of a particular dialect, will apply these hints only when
that dialect is in use.
"""
if selectable is None:
selectable = self.table
else:
selectable = coercions.expect(roles.DMLTableRole, selectable)
self._hints = self._hints.union({(selectable, dialect_name): text})
return self
@property
def entity_description(self) -> Dict[str, Any]:
"""Return a :term:`plugin-enabled` description of the table and/or
entity which this DML construct is operating against.
This attribute is generally useful when using the ORM, as an
extended structure which includes information about mapped
entities is returned. The section :ref:`queryguide_inspection`
contains more background.
For a Core statement, the structure returned by this accessor
is derived from the :attr:`.UpdateBase.table` attribute, and
refers to the :class:`.Table` being inserted, updated, or deleted::
>>> stmt = insert(user_table)
>>> stmt.entity_description
{
"name": "user_table",
"table": Table("user_table", ...)
}
.. versionadded:: 1.4.33
.. seealso::
:attr:`.UpdateBase.returning_column_descriptions`
:attr:`.Select.column_descriptions` - entity information for
a :func:`.select` construct
:ref:`queryguide_inspection` - ORM background
"""
meth = DMLState.get_plugin_class(self).get_entity_description
return meth(self)
@property
def returning_column_descriptions(self) -> List[Dict[str, Any]]:
"""Return a :term:`plugin-enabled` description of the columns
which this DML construct is RETURNING against, in other words
the expressions established as part of :meth:`.UpdateBase.returning`.
This attribute is generally useful when using the ORM, as an
extended structure which includes information about mapped
entities is returned. The section :ref:`queryguide_inspection`
contains more background.
For a Core statement, the structure returned by this accessor is
derived from the same objects that are returned by the
:attr:`.UpdateBase.exported_columns` accessor::
>>> stmt = insert(user_table).returning(user_table.c.id, user_table.c.name)
>>> stmt.entity_description
[
{
"name": "id",
"type": Integer,
"expr": Column("id", Integer(), table=<user>, ...)
},
{
"name": "name",
"type": String(),
"expr": Column("name", String(), table=<user>, ...)
},
]
.. versionadded:: 1.4.33
.. seealso::
:attr:`.UpdateBase.entity_description`
:attr:`.Select.column_descriptions` - entity information for
a :func:`.select` construct
:ref:`queryguide_inspection` - ORM background
""" # noqa: E501
meth = DMLState.get_plugin_class(
self
).get_returning_column_descriptions
return meth(self)
class ValuesBase(UpdateBase):
"""Supplies support for :meth:`.ValuesBase.values` to
INSERT and UPDATE constructs."""
__visit_name__ = "values_base"
_supports_multi_parameters = False
select: Optional[Select[Any]] = None
"""SELECT statement for INSERT .. FROM SELECT"""
_post_values_clause: Optional[ClauseElement] = None
"""used by extensions to Insert etc. to add additional syntacitcal
constructs, e.g. ON CONFLICT etc."""
_values: Optional[util.immutabledict[_DMLColumnElement, Any]] = None
_multi_values: Tuple[
Union[
Sequence[Dict[_DMLColumnElement, Any]],
Sequence[Sequence[Any]],
],
...,
] = ()
_ordered_values: Optional[List[Tuple[_DMLColumnElement, Any]]] = None
_select_names: Optional[List[str]] = None
_inline: bool = False
def __init__(self, table: _DMLTableArgument):
self.table = coercions.expect(
roles.DMLTableRole, table, apply_propagate_attrs=self
)
@_generative
@_exclusive_against(
"_select_names",
"_ordered_values",
msgs={
"_select_names": "This construct already inserts from a SELECT",
"_ordered_values": "This statement already has ordered "
"values present",
},
)
def values(
self,
*args: Union[
_DMLColumnKeyMapping[Any],
Sequence[Any],
],
**kwargs: Any,
) -> Self:
r"""Specify a fixed VALUES clause for an INSERT statement, or the SET
clause for an UPDATE.
Note that the :class:`_expression.Insert` and
:class:`_expression.Update`
constructs support
per-execution time formatting of the VALUES and/or SET clauses,
based on the arguments passed to :meth:`_engine.Connection.execute`.
However, the :meth:`.ValuesBase.values` method can be used to "fix" a
particular set of parameters into the statement.
Multiple calls to :meth:`.ValuesBase.values` will produce a new
construct, each one with the parameter list modified to include
the new parameters sent. In the typical case of a single
dictionary of parameters, the newly passed keys will replace
the same keys in the previous construct. In the case of a list-based
"multiple values" construct, each new list of values is extended
onto the existing list of values.
:param \**kwargs: key value pairs representing the string key
of a :class:`_schema.Column`
mapped to the value to be rendered into the
VALUES or SET clause::
users.insert().values(name="some name")
users.update().where(users.c.id==5).values(name="some name")
:param \*args: As an alternative to passing key/value parameters,
a dictionary, tuple, or list of dictionaries or tuples can be passed
as a single positional argument in order to form the VALUES or
SET clause of the statement. The forms that are accepted vary
based on whether this is an :class:`_expression.Insert` or an
:class:`_expression.Update` construct.
For either an :class:`_expression.Insert` or
:class:`_expression.Update`
construct, a single dictionary can be passed, which works the same as
that of the kwargs form::
users.insert().values({"name": "some name"})
users.update().values({"name": "some new name"})
Also for either form but more typically for the
:class:`_expression.Insert` construct, a tuple that contains an
entry for every column in the table is also accepted::
users.insert().values((5, "some name"))
The :class:`_expression.Insert` construct also supports being
passed a list of dictionaries or full-table-tuples, which on the
server will render the less common SQL syntax of "multiple values" -
this syntax is supported on backends such as SQLite, PostgreSQL,
MySQL, but not necessarily others::
users.insert().values([
{"name": "some name"},
{"name": "some other name"},
{"name": "yet another name"},
])
The above form would render a multiple VALUES statement similar to::
INSERT INTO users (name) VALUES
(:name_1),
(:name_2),
(:name_3)
It is essential to note that **passing multiple values is
NOT the same as using traditional executemany() form**. The above
syntax is a **special** syntax not typically used. To emit an
INSERT statement against multiple rows, the normal method is
to pass a multiple values list to the
:meth:`_engine.Connection.execute`
method, which is supported by all database backends and is generally
more efficient for a very large number of parameters.
.. seealso::
:ref:`tutorial_multiple_parameters` - an introduction to
the traditional Core method of multiple parameter set
invocation for INSERTs and other statements.
.. versionchanged:: 1.0.0 an INSERT that uses a multiple-VALUES
clause, even a list of length one,
implies that the :paramref:`_expression.Insert.inline`
flag is set to
True, indicating that the statement will not attempt to fetch
the "last inserted primary key" or other defaults. The
statement deals with an arbitrary number of rows, so the
:attr:`_engine.CursorResult.inserted_primary_key`
accessor does not
apply.
.. versionchanged:: 1.0.0 A multiple-VALUES INSERT now supports
columns with Python side default values and callables in the
same way as that of an "executemany" style of invocation; the
callable is invoked for each row. See :ref:`bug_3288`
for other details.
The UPDATE construct also supports rendering the SET parameters
in a specific order. For this feature refer to the
:meth:`_expression.Update.ordered_values` method.
.. seealso::
:meth:`_expression.Update.ordered_values`
"""
if args:
# positional case. this is currently expensive. we don't
# yet have positional-only args so we have to check the length.
# then we need to check multiparams vs. single dictionary.
# since the parameter format is needed in order to determine
# a cache key, we need to determine this up front.
arg = args[0]
if kwargs:
raise exc.ArgumentError(
"Can't pass positional and kwargs to values() "
"simultaneously"
)
elif len(args) > 1:
raise exc.ArgumentError(
"Only a single dictionary/tuple or list of "
"dictionaries/tuples is accepted positionally."
)
elif isinstance(arg, collections_abc.Sequence):
if arg and isinstance(arg[0], dict):
multi_kv_generator = DMLState.get_plugin_class(
self
)._get_multi_crud_kv_pairs
self._multi_values += (multi_kv_generator(self, arg),)
return self
if arg and isinstance(arg[0], (list, tuple)):
self._multi_values += (arg,)
return self
if TYPE_CHECKING:
# crud.py raises during compilation if this is not the
# case
assert isinstance(self, Insert)
# tuple values
arg = {c.key: value for c, value in zip(self.table.c, arg)}
else:
# kwarg path. this is the most common path for non-multi-params
# so this is fairly quick.
arg = cast("Dict[_DMLColumnArgument, Any]", kwargs)
if args:
raise exc.ArgumentError(
"Only a single dictionary/tuple or list of "
"dictionaries/tuples is accepted positionally."
)
# for top level values(), convert literals to anonymous bound
# parameters at statement construction time, so that these values can
# participate in the cache key process like any other ClauseElement.
# crud.py now intercepts bound parameters with unique=True from here
# and ensures they get the "crud"-style name when rendered.
kv_generator = DMLState.get_plugin_class(self)._get_crud_kv_pairs
coerced_arg = dict(kv_generator(self, arg.items(), True))
if self._values:
self._values = self._values.union(coerced_arg)
else:
self._values = util.immutabledict(coerced_arg)
return self
class Insert(ValuesBase):
"""Represent an INSERT construct.
The :class:`_expression.Insert` object is created using the
:func:`_expression.insert()` function.
"""
__visit_name__ = "insert"
_supports_multi_parameters = True
select = None
include_insert_from_select_defaults = False
is_insert = True
table: TableClause
_traverse_internals = (
[
("table", InternalTraversal.dp_clauseelement),
("_inline", InternalTraversal.dp_boolean),
("_select_names", InternalTraversal.dp_string_list),
("_values", InternalTraversal.dp_dml_values),
("_multi_values", InternalTraversal.dp_dml_multi_values),
("select", InternalTraversal.dp_clauseelement),
("_post_values_clause", InternalTraversal.dp_clauseelement),
("_returning", InternalTraversal.dp_clauseelement_tuple),
("_hints", InternalTraversal.dp_table_hint_list),
("_return_defaults", InternalTraversal.dp_boolean),
(
"_return_defaults_columns",
InternalTraversal.dp_clauseelement_tuple,
),
]
+ HasPrefixes._has_prefixes_traverse_internals
+ DialectKWArgs._dialect_kwargs_traverse_internals
+ Executable._executable_traverse_internals
+ HasCTE._has_ctes_traverse_internals
)
def __init__(self, table: _DMLTableArgument):
super().__init__(table)
@_generative
def inline(self) -> Self:
"""Make this :class:`_expression.Insert` construct "inline" .
When set, no attempt will be made to retrieve the
SQL-generated default values to be provided within the statement;
in particular,
this allows SQL expressions to be rendered 'inline' within the
statement without the need to pre-execute them beforehand; for
backends that support "returning", this turns off the "implicit
returning" feature for the statement.
.. versionchanged:: 1.4 the :paramref:`_expression.Insert.inline`
parameter
is now superseded by the :meth:`_expression.Insert.inline` method.
"""
self._inline = True
return self
@_generative
def from_select(
self,
names: List[str],
select: Selectable,
include_defaults: bool = True,
) -> Self:
"""Return a new :class:`_expression.Insert` construct which represents
an ``INSERT...FROM SELECT`` statement.
e.g.::
sel = select(table1.c.a, table1.c.b).where(table1.c.c > 5)
ins = table2.insert().from_select(['a', 'b'], sel)
:param names: a sequence of string column names or
:class:`_schema.Column`
objects representing the target columns.
:param select: a :func:`_expression.select` construct,
:class:`_expression.FromClause`
or other construct which resolves into a
:class:`_expression.FromClause`,
such as an ORM :class:`_query.Query` object, etc. The order of
columns returned from this FROM clause should correspond to the
order of columns sent as the ``names`` parameter; while this
is not checked before passing along to the database, the database
would normally raise an exception if these column lists don't
correspond.
:param include_defaults: if True, non-server default values and
SQL expressions as specified on :class:`_schema.Column` objects
(as documented in :ref:`metadata_defaults_toplevel`) not
otherwise specified in the list of names will be rendered
into the INSERT and SELECT statements, so that these values are also
included in the data to be inserted.
.. note:: A Python-side default that uses a Python callable function
will only be invoked **once** for the whole statement, and **not
per row**.
.. versionadded:: 1.0.0 - :meth:`_expression.Insert.from_select`
now renders
Python-side and SQL expression column defaults into the
SELECT statement for columns otherwise not included in the
list of column names.
.. versionchanged:: 1.0.0 an INSERT that uses FROM SELECT
implies that the :paramref:`_expression.insert.inline`
flag is set to
True, indicating that the statement will not attempt to fetch
the "last inserted primary key" or other defaults. The statement
deals with an arbitrary number of rows, so the
:attr:`_engine.CursorResult.inserted_primary_key`
accessor does not apply.
"""
if self._values:
raise exc.InvalidRequestError(
"This construct already inserts value expressions"
)
self._select_names = names
self._inline = True
self.include_insert_from_select_defaults = include_defaults
self.select = coercions.expect(roles.DMLSelectRole, select)
return self
if TYPE_CHECKING:
# START OVERLOADED FUNCTIONS self.returning ReturningInsert 1-8
# code within this block is **programmatically,
# statically generated** by tools/generate_tuple_map_overloads.py
@overload
def returning(self, __ent0: _TCCA[_T0]) -> ReturningInsert[Tuple[_T0]]:
...
@overload
def returning(
self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1]
) -> ReturningInsert[Tuple[_T0, _T1]]:
...
@overload
def returning(
self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2]
) -> ReturningInsert[Tuple[_T0, _T1, _T2]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
) -> ReturningInsert[Tuple[_T0, _T1, _T2, _T3]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
__ent4: _TCCA[_T4],
) -> ReturningInsert[Tuple[_T0, _T1, _T2, _T3, _T4]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
__ent4: _TCCA[_T4],
__ent5: _TCCA[_T5],
) -> ReturningInsert[Tuple[_T0, _T1, _T2, _T3, _T4, _T5]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
__ent4: _TCCA[_T4],
__ent5: _TCCA[_T5],
__ent6: _TCCA[_T6],
) -> ReturningInsert[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
__ent4: _TCCA[_T4],
__ent5: _TCCA[_T5],
__ent6: _TCCA[_T6],
__ent7: _TCCA[_T7],
) -> ReturningInsert[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7]]:
...
# END OVERLOADED FUNCTIONS self.returning
@overload
def returning(
self, *cols: _ColumnsClauseArgument[Any], **__kw: Any
) -> ReturningInsert[Any]:
...
def returning(
self, *cols: _ColumnsClauseArgument[Any], **__kw: Any
) -> ReturningInsert[Any]:
...
class ReturningInsert(Insert, TypedReturnsRows[_TP]):
"""Typing-only class that establishes a generic type form of
:class:`.Insert` which tracks returned column types.
This datatype is delivered when calling the
:meth:`.Insert.returning` method.
.. versionadded:: 2.0
"""
class DMLWhereBase:
table: _DMLTableElement
_where_criteria: Tuple[ColumnElement[Any], ...] = ()
@_generative
def where(self, *whereclause: _ColumnExpressionArgument[bool]) -> Self:
"""Return a new construct with the given expression(s) added to
its WHERE clause, joined to the existing clause via AND, if any.
Both :meth:`_dml.Update.where` and :meth:`_dml.Delete.where`
support multiple-table forms, including database-specific
``UPDATE...FROM`` as well as ``DELETE..USING``. For backends that
don't have multiple-table support, a backend agnostic approach
to using multiple tables is to make use of correlated subqueries.
See the linked tutorial sections below for examples.
.. seealso::
:ref:`tutorial_correlated_updates`
:ref:`tutorial_update_from`
:ref:`tutorial_multi_table_deletes`
"""
for criterion in whereclause:
where_criteria: ColumnElement[Any] = coercions.expect(
roles.WhereHavingRole, criterion
)
self._where_criteria += (where_criteria,)
return self
def filter(self, *criteria: roles.ExpressionElementRole[Any]) -> Self:
"""A synonym for the :meth:`_dml.DMLWhereBase.where` method.
.. versionadded:: 1.4
"""
return self.where(*criteria)
def _filter_by_zero(self) -> _DMLTableElement:
return self.table
def filter_by(self, **kwargs: Any) -> Self:
r"""apply the given filtering criterion as a WHERE clause
to this select.
"""
from_entity = self._filter_by_zero()
clauses = [
_entity_namespace_key(from_entity, key) == value
for key, value in kwargs.items()
]
return self.filter(*clauses)
@property
def whereclause(self) -> Optional[ColumnElement[Any]]:
"""Return the completed WHERE clause for this :class:`.DMLWhereBase`
statement.
This assembles the current collection of WHERE criteria
into a single :class:`_expression.BooleanClauseList` construct.
.. versionadded:: 1.4
"""
return BooleanClauseList._construct_for_whereclause(
self._where_criteria
)
class Update(DMLWhereBase, ValuesBase):
"""Represent an Update construct.
The :class:`_expression.Update` object is created using the
:func:`_expression.update()` function.
"""
__visit_name__ = "update"
is_update = True
_traverse_internals = (
[
("table", InternalTraversal.dp_clauseelement),
("_where_criteria", InternalTraversal.dp_clauseelement_tuple),
("_inline", InternalTraversal.dp_boolean),
("_ordered_values", InternalTraversal.dp_dml_ordered_values),
("_values", InternalTraversal.dp_dml_values),
("_returning", InternalTraversal.dp_clauseelement_tuple),
("_hints", InternalTraversal.dp_table_hint_list),
("_return_defaults", InternalTraversal.dp_boolean),
(
"_return_defaults_columns",
InternalTraversal.dp_clauseelement_tuple,
),
]
+ HasPrefixes._has_prefixes_traverse_internals
+ DialectKWArgs._dialect_kwargs_traverse_internals
+ Executable._executable_traverse_internals
+ HasCTE._has_ctes_traverse_internals
)
def __init__(self, table: _DMLTableArgument):
super().__init__(table)
@_generative
def ordered_values(self, *args: Tuple[_DMLColumnArgument, Any]) -> Self:
"""Specify the VALUES clause of this UPDATE statement with an explicit
parameter ordering that will be maintained in the SET clause of the
resulting UPDATE statement.
E.g.::
stmt = table.update().ordered_values(
("name", "ed"), ("ident": "foo")
)
.. seealso::
:ref:`tutorial_parameter_ordered_updates` - full example of the
:meth:`_expression.Update.ordered_values` method.
.. versionchanged:: 1.4 The :meth:`_expression.Update.ordered_values`
method
supersedes the
:paramref:`_expression.update.preserve_parameter_order`
parameter, which will be removed in SQLAlchemy 2.0.
"""
if self._values:
raise exc.ArgumentError(
"This statement already has values present"
)
elif self._ordered_values:
raise exc.ArgumentError(
"This statement already has ordered values present"
)
kv_generator = DMLState.get_plugin_class(self)._get_crud_kv_pairs
self._ordered_values = kv_generator(self, args, True)
return self
@_generative
def inline(self) -> Self:
"""Make this :class:`_expression.Update` construct "inline" .
When set, SQL defaults present on :class:`_schema.Column`
objects via the
``default`` keyword will be compiled 'inline' into the statement and
not pre-executed. This means that their values will not be available
in the dictionary returned from
:meth:`_engine.CursorResult.last_updated_params`.
.. versionchanged:: 1.4 the :paramref:`_expression.update.inline`
parameter
is now superseded by the :meth:`_expression.Update.inline` method.
"""
self._inline = True
return self
if TYPE_CHECKING:
# START OVERLOADED FUNCTIONS self.returning ReturningUpdate 1-8
# code within this block is **programmatically,
# statically generated** by tools/generate_tuple_map_overloads.py
@overload
def returning(self, __ent0: _TCCA[_T0]) -> ReturningUpdate[Tuple[_T0]]:
...
@overload
def returning(
self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1]
) -> ReturningUpdate[Tuple[_T0, _T1]]:
...
@overload
def returning(
self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2]
) -> ReturningUpdate[Tuple[_T0, _T1, _T2]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
) -> ReturningUpdate[Tuple[_T0, _T1, _T2, _T3]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
__ent4: _TCCA[_T4],
) -> ReturningUpdate[Tuple[_T0, _T1, _T2, _T3, _T4]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
__ent4: _TCCA[_T4],
__ent5: _TCCA[_T5],
) -> ReturningUpdate[Tuple[_T0, _T1, _T2, _T3, _T4, _T5]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
__ent4: _TCCA[_T4],
__ent5: _TCCA[_T5],
__ent6: _TCCA[_T6],
) -> ReturningUpdate[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
__ent4: _TCCA[_T4],
__ent5: _TCCA[_T5],
__ent6: _TCCA[_T6],
__ent7: _TCCA[_T7],
) -> ReturningUpdate[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7]]:
...
# END OVERLOADED FUNCTIONS self.returning
@overload
def returning(
self, *cols: _ColumnsClauseArgument[Any], **__kw: Any
) -> ReturningUpdate[Any]:
...
def returning(
self, *cols: _ColumnsClauseArgument[Any], **__kw: Any
) -> ReturningUpdate[Any]:
...
class ReturningUpdate(Update, TypedReturnsRows[_TP]):
"""Typing-only class that establishes a generic type form of
:class:`.Update` which tracks returned column types.
This datatype is delivered when calling the
:meth:`.Update.returning` method.
.. versionadded:: 2.0
"""
class Delete(DMLWhereBase, UpdateBase):
"""Represent a DELETE construct.
The :class:`_expression.Delete` object is created using the
:func:`_expression.delete()` function.
"""
__visit_name__ = "delete"
is_delete = True
_traverse_internals = (
[
("table", InternalTraversal.dp_clauseelement),
("_where_criteria", InternalTraversal.dp_clauseelement_tuple),
("_returning", InternalTraversal.dp_clauseelement_tuple),
("_hints", InternalTraversal.dp_table_hint_list),
]
+ HasPrefixes._has_prefixes_traverse_internals
+ DialectKWArgs._dialect_kwargs_traverse_internals
+ Executable._executable_traverse_internals
+ HasCTE._has_ctes_traverse_internals
)
def __init__(self, table: _DMLTableArgument):
self.table = coercions.expect(
roles.DMLTableRole, table, apply_propagate_attrs=self
)
if TYPE_CHECKING:
# START OVERLOADED FUNCTIONS self.returning ReturningDelete 1-8
# code within this block is **programmatically,
# statically generated** by tools/generate_tuple_map_overloads.py
@overload
def returning(self, __ent0: _TCCA[_T0]) -> ReturningDelete[Tuple[_T0]]:
...
@overload
def returning(
self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1]
) -> ReturningDelete[Tuple[_T0, _T1]]:
...
@overload
def returning(
self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2]
) -> ReturningDelete[Tuple[_T0, _T1, _T2]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
) -> ReturningDelete[Tuple[_T0, _T1, _T2, _T3]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
__ent4: _TCCA[_T4],
) -> ReturningDelete[Tuple[_T0, _T1, _T2, _T3, _T4]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
__ent4: _TCCA[_T4],
__ent5: _TCCA[_T5],
) -> ReturningDelete[Tuple[_T0, _T1, _T2, _T3, _T4, _T5]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
__ent4: _TCCA[_T4],
__ent5: _TCCA[_T5],
__ent6: _TCCA[_T6],
) -> ReturningDelete[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6]]:
...
@overload
def returning(
self,
__ent0: _TCCA[_T0],
__ent1: _TCCA[_T1],
__ent2: _TCCA[_T2],
__ent3: _TCCA[_T3],
__ent4: _TCCA[_T4],
__ent5: _TCCA[_T5],
__ent6: _TCCA[_T6],
__ent7: _TCCA[_T7],
) -> ReturningDelete[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7]]:
...
# END OVERLOADED FUNCTIONS self.returning
@overload
def returning(
self, *cols: _ColumnsClauseArgument[Any], **__kw: Any
) -> ReturningDelete[Any]:
...
def returning(
self, *cols: _ColumnsClauseArgument[Any], **__kw: Any
) -> ReturningDelete[Any]:
...
class ReturningDelete(Update, TypedReturnsRows[_TP]):
"""Typing-only class that establishes a generic type form of
:class:`.Delete` which tracks returned column types.
This datatype is delivered when calling the
:meth:`.Delete.returning` method.
.. versionadded:: 2.0
"""