You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
523 lines
13 KiB
523 lines
13 KiB
6 years ago
|
import datetime
|
||
|
import hashlib
|
||
|
import heapq
|
||
|
import math
|
||
|
import os
|
||
|
import random
|
||
|
import re
|
||
|
import sys
|
||
|
import threading
|
||
|
import zlib
|
||
|
try:
|
||
|
from collections import Counter
|
||
|
except ImportError:
|
||
|
Counter = None
|
||
|
try:
|
||
|
from urlparse import urlparse
|
||
|
except ImportError:
|
||
|
from urllib.parse import urlparse
|
||
|
|
||
|
try:
|
||
|
from playhouse._sqlite_ext import TableFunction
|
||
|
except ImportError:
|
||
|
TableFunction = None
|
||
|
|
||
|
|
||
|
SQLITE_DATETIME_FORMATS = (
|
||
|
'%Y-%m-%d %H:%M:%S',
|
||
|
'%Y-%m-%d %H:%M:%S.%f',
|
||
|
'%Y-%m-%d',
|
||
|
'%H:%M:%S',
|
||
|
'%H:%M:%S.%f',
|
||
|
'%H:%M')
|
||
|
|
||
|
from peewee import format_date_time
|
||
|
|
||
|
def format_date_time_sqlite(date_value):
|
||
|
return format_date_time(date_value, SQLITE_DATETIME_FORMATS)
|
||
|
|
||
|
try:
|
||
|
from playhouse import _sqlite_udf as cython_udf
|
||
|
except ImportError:
|
||
|
cython_udf = None
|
||
|
|
||
|
|
||
|
# Group udf by function.
|
||
|
CONTROL_FLOW = 'control_flow'
|
||
|
DATE = 'date'
|
||
|
FILE = 'file'
|
||
|
HELPER = 'helpers'
|
||
|
MATH = 'math'
|
||
|
STRING = 'string'
|
||
|
|
||
|
AGGREGATE_COLLECTION = {}
|
||
|
TABLE_FUNCTION_COLLECTION = {}
|
||
|
UDF_COLLECTION = {}
|
||
|
|
||
|
|
||
|
class synchronized_dict(dict):
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super(synchronized_dict, self).__init__(*args, **kwargs)
|
||
|
self._lock = threading.Lock()
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
with self._lock:
|
||
|
return super(synchronized_dict, self).__getitem__(key)
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
with self._lock:
|
||
|
return super(synchronized_dict, self).__setitem__(key, value)
|
||
|
|
||
|
def __delitem__(self, key):
|
||
|
with self._lock:
|
||
|
return super(synchronized_dict, self).__delitem__(key)
|
||
|
|
||
|
|
||
|
STATE = synchronized_dict()
|
||
|
SETTINGS = synchronized_dict()
|
||
|
|
||
|
# Class and function decorators.
|
||
|
def aggregate(*groups):
|
||
|
def decorator(klass):
|
||
|
for group in groups:
|
||
|
AGGREGATE_COLLECTION.setdefault(group, [])
|
||
|
AGGREGATE_COLLECTION[group].append(klass)
|
||
|
return klass
|
||
|
return decorator
|
||
|
|
||
|
def table_function(*groups):
|
||
|
def decorator(klass):
|
||
|
for group in groups:
|
||
|
TABLE_FUNCTION_COLLECTION.setdefault(group, [])
|
||
|
TABLE_FUNCTION_COLLECTION[group].append(klass)
|
||
|
return klass
|
||
|
return decorator
|
||
|
|
||
|
def udf(*groups):
|
||
|
def decorator(fn):
|
||
|
for group in groups:
|
||
|
UDF_COLLECTION.setdefault(group, [])
|
||
|
UDF_COLLECTION[group].append(fn)
|
||
|
return fn
|
||
|
return decorator
|
||
|
|
||
|
# Register aggregates / functions with connection.
|
||
|
def register_aggregate_groups(db, *groups):
|
||
|
seen = set()
|
||
|
for group in groups:
|
||
|
klasses = AGGREGATE_COLLECTION.get(group, ())
|
||
|
for klass in klasses:
|
||
|
name = getattr(klass, 'name', klass.__name__)
|
||
|
if name not in seen:
|
||
|
seen.add(name)
|
||
|
db.register_aggregate(klass, name)
|
||
|
|
||
|
def register_table_function_groups(db, *groups):
|
||
|
seen = set()
|
||
|
for group in groups:
|
||
|
klasses = TABLE_FUNCTION_COLLECTION.get(group, ())
|
||
|
for klass in klasses:
|
||
|
if klass.name not in seen:
|
||
|
seen.add(klass.name)
|
||
|
db.register_table_function(klass)
|
||
|
|
||
|
def register_udf_groups(db, *groups):
|
||
|
seen = set()
|
||
|
for group in groups:
|
||
|
functions = UDF_COLLECTION.get(group, ())
|
||
|
for function in functions:
|
||
|
name = function.__name__
|
||
|
if name not in seen:
|
||
|
seen.add(name)
|
||
|
db.register_function(function, name)
|
||
|
|
||
|
def register_groups(db, *groups):
|
||
|
register_aggregate_groups(db, *groups)
|
||
|
register_table_function_groups(db, *groups)
|
||
|
register_udf_groups(db, *groups)
|
||
|
|
||
|
def register_all(db):
|
||
|
register_aggregate_groups(db, *AGGREGATE_COLLECTION)
|
||
|
register_table_function_groups(db, *TABLE_FUNCTION_COLLECTION)
|
||
|
register_udf_groups(db, *UDF_COLLECTION)
|
||
|
|
||
|
|
||
|
# Begin actual user-defined functions and aggregates.
|
||
|
|
||
|
# Scalar functions.
|
||
|
@udf(CONTROL_FLOW)
|
||
|
def if_then_else(cond, truthy, falsey=None):
|
||
|
if cond:
|
||
|
return truthy
|
||
|
return falsey
|
||
|
|
||
|
@udf(DATE)
|
||
|
def strip_tz(date_str):
|
||
|
date_str = date_str.replace('T', ' ')
|
||
|
tz_idx1 = date_str.find('+')
|
||
|
if tz_idx1 != -1:
|
||
|
return date_str[:tz_idx1]
|
||
|
tz_idx2 = date_str.find('-')
|
||
|
if tz_idx2 > 13:
|
||
|
return date_str[:tz_idx2]
|
||
|
return date_str
|
||
|
|
||
|
@udf(DATE)
|
||
|
def human_delta(nseconds, glue=', '):
|
||
|
parts = (
|
||
|
(86400 * 365, 'year'),
|
||
|
(86400 * 30, 'month'),
|
||
|
(86400 * 7, 'week'),
|
||
|
(86400, 'day'),
|
||
|
(3600, 'hour'),
|
||
|
(60, 'minute'),
|
||
|
(1, 'second'),
|
||
|
)
|
||
|
accum = []
|
||
|
for offset, name in parts:
|
||
|
val, nseconds = divmod(nseconds, offset)
|
||
|
if val:
|
||
|
suffix = val != 1 and 's' or ''
|
||
|
accum.append('%s %s%s' % (val, name, suffix))
|
||
|
if not accum:
|
||
|
return '0 seconds'
|
||
|
return glue.join(accum)
|
||
|
|
||
|
@udf(FILE)
|
||
|
def file_ext(filename):
|
||
|
try:
|
||
|
res = os.path.splitext(filename)
|
||
|
except ValueError:
|
||
|
return None
|
||
|
return res[1]
|
||
|
|
||
|
@udf(FILE)
|
||
|
def file_read(filename):
|
||
|
try:
|
||
|
with open(filename) as fh:
|
||
|
return fh.read()
|
||
|
except:
|
||
|
pass
|
||
|
|
||
|
if sys.version_info[0] == 2:
|
||
|
@udf(HELPER)
|
||
|
def gzip(data, compression=9):
|
||
|
return buffer(zlib.compress(data, compression))
|
||
|
|
||
|
@udf(HELPER)
|
||
|
def gunzip(data):
|
||
|
return zlib.decompress(data)
|
||
|
else:
|
||
|
@udf(HELPER)
|
||
|
def gzip(data, compression=9):
|
||
|
if isinstance(data, str):
|
||
|
data = bytes(data.encode('raw_unicode_escape'))
|
||
|
return zlib.compress(data, compression)
|
||
|
|
||
|
@udf(HELPER)
|
||
|
def gunzip(data):
|
||
|
return zlib.decompress(data)
|
||
|
|
||
|
@udf(HELPER)
|
||
|
def hostname(url):
|
||
|
parse_result = urlparse(url)
|
||
|
if parse_result:
|
||
|
return parse_result.netloc
|
||
|
|
||
|
@udf(HELPER)
|
||
|
def toggle(key):
|
||
|
key = key.lower()
|
||
|
STATE[key] = ret = not STATE.get(key)
|
||
|
return ret
|
||
|
|
||
|
@udf(HELPER)
|
||
|
def setting(key, value=None):
|
||
|
if value is None:
|
||
|
return SETTINGS.get(key)
|
||
|
else:
|
||
|
SETTINGS[key] = value
|
||
|
return value
|
||
|
|
||
|
@udf(HELPER)
|
||
|
def clear_settings():
|
||
|
SETTINGS.clear()
|
||
|
|
||
|
@udf(HELPER)
|
||
|
def clear_toggles():
|
||
|
STATE.clear()
|
||
|
|
||
|
@udf(MATH)
|
||
|
def randomrange(start, end=None, step=None):
|
||
|
if end is None:
|
||
|
start, end = 0, start
|
||
|
elif step is None:
|
||
|
step = 1
|
||
|
return random.randrange(start, end, step)
|
||
|
|
||
|
@udf(MATH)
|
||
|
def gauss_distribution(mean, sigma):
|
||
|
try:
|
||
|
return random.gauss(mean, sigma)
|
||
|
except ValueError:
|
||
|
return None
|
||
|
|
||
|
@udf(MATH)
|
||
|
def sqrt(n):
|
||
|
try:
|
||
|
return math.sqrt(n)
|
||
|
except ValueError:
|
||
|
return None
|
||
|
|
||
|
@udf(MATH)
|
||
|
def tonumber(s):
|
||
|
try:
|
||
|
return int(s)
|
||
|
except ValueError:
|
||
|
try:
|
||
|
return float(s)
|
||
|
except:
|
||
|
return None
|
||
|
|
||
|
@udf(STRING)
|
||
|
def substr_count(haystack, needle):
|
||
|
if not haystack or not needle:
|
||
|
return 0
|
||
|
return haystack.count(needle)
|
||
|
|
||
|
@udf(STRING)
|
||
|
def strip_chars(haystack, chars):
|
||
|
return haystack.strip(chars)
|
||
|
|
||
|
def _hash(constructor, *args):
|
||
|
hash_obj = constructor()
|
||
|
for arg in args:
|
||
|
hash_obj.update(arg)
|
||
|
return hash_obj.hexdigest()
|
||
|
|
||
|
# Aggregates.
|
||
|
class _heap_agg(object):
|
||
|
def __init__(self):
|
||
|
self.heap = []
|
||
|
self.ct = 0
|
||
|
|
||
|
def process(self, value):
|
||
|
return value
|
||
|
|
||
|
def step(self, value):
|
||
|
self.ct += 1
|
||
|
heapq.heappush(self.heap, self.process(value))
|
||
|
|
||
|
class _datetime_heap_agg(_heap_agg):
|
||
|
def process(self, value):
|
||
|
return format_date_time_sqlite(value)
|
||
|
|
||
|
if sys.version_info[:2] == (2, 6):
|
||
|
def total_seconds(td):
|
||
|
return (td.seconds +
|
||
|
(td.days * 86400) +
|
||
|
(td.microseconds / (10.**6)))
|
||
|
else:
|
||
|
total_seconds = lambda td: td.total_seconds()
|
||
|
|
||
|
@aggregate(DATE)
|
||
|
class mintdiff(_datetime_heap_agg):
|
||
|
def finalize(self):
|
||
|
dtp = min_diff = None
|
||
|
while self.heap:
|
||
|
if min_diff is None:
|
||
|
if dtp is None:
|
||
|
dtp = heapq.heappop(self.heap)
|
||
|
continue
|
||
|
dt = heapq.heappop(self.heap)
|
||
|
diff = dt - dtp
|
||
|
if min_diff is None or min_diff > diff:
|
||
|
min_diff = diff
|
||
|
dtp = dt
|
||
|
if min_diff is not None:
|
||
|
return total_seconds(min_diff)
|
||
|
|
||
|
@aggregate(DATE)
|
||
|
class avgtdiff(_datetime_heap_agg):
|
||
|
def finalize(self):
|
||
|
if self.ct < 1:
|
||
|
return
|
||
|
elif self.ct == 1:
|
||
|
return 0
|
||
|
|
||
|
total = ct = 0
|
||
|
dtp = None
|
||
|
while self.heap:
|
||
|
if total == 0:
|
||
|
if dtp is None:
|
||
|
dtp = heapq.heappop(self.heap)
|
||
|
continue
|
||
|
|
||
|
dt = heapq.heappop(self.heap)
|
||
|
diff = dt - dtp
|
||
|
ct += 1
|
||
|
total += total_seconds(diff)
|
||
|
dtp = dt
|
||
|
|
||
|
return float(total) / ct
|
||
|
|
||
|
@aggregate(DATE)
|
||
|
class duration(object):
|
||
|
def __init__(self):
|
||
|
self._min = self._max = None
|
||
|
|
||
|
def step(self, value):
|
||
|
dt = format_date_time_sqlite(value)
|
||
|
if self._min is None or dt < self._min:
|
||
|
self._min = dt
|
||
|
if self._max is None or dt > self._max:
|
||
|
self._max = dt
|
||
|
|
||
|
def finalize(self):
|
||
|
if self._min and self._max:
|
||
|
td = (self._max - self._min)
|
||
|
return total_seconds(td)
|
||
|
return None
|
||
|
|
||
|
@aggregate(MATH)
|
||
|
class mode(object):
|
||
|
if Counter:
|
||
|
def __init__(self):
|
||
|
self.items = Counter()
|
||
|
|
||
|
def step(self, *args):
|
||
|
self.items.update(args)
|
||
|
|
||
|
def finalize(self):
|
||
|
if self.items:
|
||
|
return self.items.most_common(1)[0][0]
|
||
|
else:
|
||
|
def __init__(self):
|
||
|
self.items = []
|
||
|
|
||
|
def step(self, item):
|
||
|
self.items.append(item)
|
||
|
|
||
|
def finalize(self):
|
||
|
if self.items:
|
||
|
return max(set(self.items), key=self.items.count)
|
||
|
|
||
|
@aggregate(MATH)
|
||
|
class minrange(_heap_agg):
|
||
|
def finalize(self):
|
||
|
if self.ct == 0:
|
||
|
return
|
||
|
elif self.ct == 1:
|
||
|
return 0
|
||
|
|
||
|
prev = min_diff = None
|
||
|
|
||
|
while self.heap:
|
||
|
if min_diff is None:
|
||
|
if prev is None:
|
||
|
prev = heapq.heappop(self.heap)
|
||
|
continue
|
||
|
curr = heapq.heappop(self.heap)
|
||
|
diff = curr - prev
|
||
|
if min_diff is None or min_diff > diff:
|
||
|
min_diff = diff
|
||
|
prev = curr
|
||
|
return min_diff
|
||
|
|
||
|
@aggregate(MATH)
|
||
|
class avgrange(_heap_agg):
|
||
|
def finalize(self):
|
||
|
if self.ct == 0:
|
||
|
return
|
||
|
elif self.ct == 1:
|
||
|
return 0
|
||
|
|
||
|
total = ct = 0
|
||
|
prev = None
|
||
|
while self.heap:
|
||
|
if total == 0:
|
||
|
if prev is None:
|
||
|
prev = heapq.heappop(self.heap)
|
||
|
continue
|
||
|
|
||
|
curr = heapq.heappop(self.heap)
|
||
|
diff = curr - prev
|
||
|
ct += 1
|
||
|
total += diff
|
||
|
prev = curr
|
||
|
|
||
|
return float(total) / ct
|
||
|
|
||
|
@aggregate(MATH)
|
||
|
class _range(object):
|
||
|
name = 'range'
|
||
|
|
||
|
def __init__(self):
|
||
|
self._min = self._max = None
|
||
|
|
||
|
def step(self, value):
|
||
|
if self._min is None or value < self._min:
|
||
|
self._min = value
|
||
|
if self._max is None or value > self._max:
|
||
|
self._max = value
|
||
|
|
||
|
def finalize(self):
|
||
|
if self._min is not None and self._max is not None:
|
||
|
return self._max - self._min
|
||
|
return None
|
||
|
|
||
|
|
||
|
if cython_udf is not None:
|
||
|
damerau_levenshtein_dist = udf(STRING)(cython_udf.damerau_levenshtein_dist)
|
||
|
levenshtein_dist = udf(STRING)(cython_udf.levenshtein_dist)
|
||
|
str_dist = udf(STRING)(cython_udf.str_dist)
|
||
|
median = aggregate(MATH)(cython_udf.median)
|
||
|
|
||
|
|
||
|
if TableFunction is not None:
|
||
|
@table_function(STRING)
|
||
|
class RegexSearch(TableFunction):
|
||
|
params = ['regex', 'search_string']
|
||
|
columns = ['match']
|
||
|
name = 'regex_search'
|
||
|
|
||
|
def initialize(self, regex=None, search_string=None):
|
||
|
self._iter = re.finditer(regex, search_string)
|
||
|
|
||
|
def iterate(self, idx):
|
||
|
return (next(self._iter).group(0),)
|
||
|
|
||
|
@table_function(DATE)
|
||
|
class DateSeries(TableFunction):
|
||
|
params = ['start', 'stop', 'step_seconds']
|
||
|
columns = ['date']
|
||
|
name = 'date_series'
|
||
|
|
||
|
def initialize(self, start, stop, step_seconds=86400):
|
||
|
self.start = format_date_time_sqlite(start)
|
||
|
self.stop = format_date_time_sqlite(stop)
|
||
|
step_seconds = int(step_seconds)
|
||
|
self.step_seconds = datetime.timedelta(seconds=step_seconds)
|
||
|
|
||
|
if (self.start.hour == 0 and
|
||
|
self.start.minute == 0 and
|
||
|
self.start.second == 0 and
|
||
|
step_seconds >= 86400):
|
||
|
self.format = '%Y-%m-%d'
|
||
|
elif (self.start.year == 1900 and
|
||
|
self.start.month == 1 and
|
||
|
self.start.day == 1 and
|
||
|
self.stop.year == 1900 and
|
||
|
self.stop.month == 1 and
|
||
|
self.stop.day == 1 and
|
||
|
step_seconds < 86400):
|
||
|
self.format = '%H:%M:%S'
|
||
|
else:
|
||
|
self.format = '%Y-%m-%d %H:%M:%S'
|
||
|
|
||
|
def iterate(self, idx):
|
||
|
if self.start > self.stop:
|
||
|
raise StopIteration
|
||
|
current = self.start
|
||
|
self.start += self.step_seconds
|
||
|
return (current.strftime(self.format),)
|