You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
bazarr/libs/sqlalchemy/util/_collections.py

723 lines
20 KiB

# util/_collections.py
# Copyright (C) 2005-2023 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: https://www.opensource.org/licenses/mit-license.php
# mypy: allow-untyped-defs, allow-untyped-calls
"""Collection classes and helpers."""
from __future__ import annotations
import collections.abc as collections_abc
import operator
import threading
import types
import typing
from typing import Any
from typing import Callable
from typing import cast
from typing import Dict
from typing import FrozenSet
from typing import Generic
from typing import Iterable
from typing import Iterator
from typing import List
from typing import Mapping
from typing import NoReturn
from typing import Optional
from typing import overload
from typing import Sequence
from typing import Set
from typing import Tuple
from typing import TypeVar
from typing import Union
from typing import ValuesView
import weakref
from ._has_cy import HAS_CYEXTENSION
from .typing import Literal
from .typing import Protocol
if typing.TYPE_CHECKING or not HAS_CYEXTENSION:
from ._py_collections import immutabledict as immutabledict
from ._py_collections import IdentitySet as IdentitySet
from ._py_collections import ReadOnlyContainer as ReadOnlyContainer
from ._py_collections import ImmutableDictBase as ImmutableDictBase
from ._py_collections import OrderedSet as OrderedSet
from ._py_collections import unique_list as unique_list
else:
from sqlalchemy.cyextension.immutabledict import (
ReadOnlyContainer as ReadOnlyContainer,
)
from sqlalchemy.cyextension.immutabledict import (
ImmutableDictBase as ImmutableDictBase,
)
from sqlalchemy.cyextension.immutabledict import (
immutabledict as immutabledict,
)
from sqlalchemy.cyextension.collections import IdentitySet as IdentitySet
from sqlalchemy.cyextension.collections import OrderedSet as OrderedSet
from sqlalchemy.cyextension.collections import ( # noqa
unique_list as unique_list,
)
_T = TypeVar("_T", bound=Any)
_KT = TypeVar("_KT", bound=Any)
_VT = TypeVar("_VT", bound=Any)
_T_co = TypeVar("_T_co", covariant=True)
EMPTY_SET: FrozenSet[Any] = frozenset()
def merge_lists_w_ordering(a: List[Any], b: List[Any]) -> List[Any]:
"""merge two lists, maintaining ordering as much as possible.
this is to reconcile vars(cls) with cls.__annotations__.
Example::
>>> a = ['__tablename__', 'id', 'x', 'created_at']
>>> b = ['id', 'name', 'data', 'y', 'created_at']
>>> merge_lists_w_ordering(a, b)
['__tablename__', 'id', 'name', 'data', 'y', 'x', 'created_at']
This is not necessarily the ordering that things had on the class,
in this case the class is::
class User(Base):
__tablename__ = "users"
id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str]
data: Mapped[Optional[str]]
x = Column(Integer)
y: Mapped[int]
created_at: Mapped[datetime.datetime] = mapped_column()
But things are *mostly* ordered.
The algorithm could also be done by creating a partial ordering for
all items in both lists and then using topological_sort(), but that
is too much overhead.
Background on how I came up with this is at:
https://gist.github.com/zzzeek/89de958cf0803d148e74861bd682ebae
"""
overlap = set(a).intersection(b)
result = []
current, other = iter(a), iter(b)
while True:
for element in current:
if element in overlap:
overlap.discard(element)
other, current = current, other
break
result.append(element)
else:
result.extend(other)
break
return result
def coerce_to_immutabledict(d: Mapping[_KT, _VT]) -> immutabledict[_KT, _VT]:
if not d:
return EMPTY_DICT
elif isinstance(d, immutabledict):
return d
else:
return immutabledict(d)
EMPTY_DICT: immutabledict[Any, Any] = immutabledict()
class FacadeDict(ImmutableDictBase[_KT, _VT]):
"""A dictionary that is not publicly mutable."""
def __new__(cls, *args: Any) -> FacadeDict[Any, Any]:
new = ImmutableDictBase.__new__(cls)
return new
def copy(self) -> NoReturn:
raise NotImplementedError(
"an immutabledict shouldn't need to be copied. use dict(d) "
"if you need a mutable dictionary."
)
def __reduce__(self) -> Any:
return FacadeDict, (dict(self),)
def _insert_item(self, key: _KT, value: _VT) -> None:
"""insert an item into the dictionary directly."""
dict.__setitem__(self, key, value)
def __repr__(self) -> str:
return "FacadeDict(%s)" % dict.__repr__(self)
_DT = TypeVar("_DT", bound=Any)
_F = TypeVar("_F", bound=Any)
class Properties(Generic[_T]):
"""Provide a __getattr__/__setattr__ interface over a dict."""
__slots__ = ("_data",)
_data: Dict[str, _T]
def __init__(self, data: Dict[str, _T]):
object.__setattr__(self, "_data", data)
def __len__(self) -> int:
return len(self._data)
def __iter__(self) -> Iterator[_T]:
return iter(list(self._data.values()))
def __dir__(self) -> List[str]:
return dir(super()) + [str(k) for k in self._data.keys()]
def __add__(self, other: Properties[_F]) -> List[Union[_T, _F]]:
return list(self) + list(other) # type: ignore
def __setitem__(self, key: str, obj: _T) -> None:
self._data[key] = obj
def __getitem__(self, key: str) -> _T:
return self._data[key]
def __delitem__(self, key: str) -> None:
del self._data[key]
def __setattr__(self, key: str, obj: _T) -> None:
self._data[key] = obj
def __getstate__(self) -> Dict[str, Any]:
return {"_data": self._data}
def __setstate__(self, state: Dict[str, Any]) -> None:
object.__setattr__(self, "_data", state["_data"])
def __getattr__(self, key: str) -> _T:
try:
return self._data[key]
except KeyError:
raise AttributeError(key)
def __contains__(self, key: str) -> bool:
return key in self._data
def as_readonly(self) -> ReadOnlyProperties[_T]:
"""Return an immutable proxy for this :class:`.Properties`."""
return ReadOnlyProperties(self._data)
def update(self, value: Dict[str, _T]) -> None:
self._data.update(value)
@overload
def get(self, key: str) -> Optional[_T]:
...
@overload
def get(self, key: str, default: Union[_DT, _T]) -> Union[_DT, _T]:
...
def get(
self, key: str, default: Optional[Union[_DT, _T]] = None
) -> Optional[Union[_T, _DT]]:
if key in self:
return self[key]
else:
return default
def keys(self) -> List[str]:
return list(self._data)
def values(self) -> List[_T]:
return list(self._data.values())
def items(self) -> List[Tuple[str, _T]]:
return list(self._data.items())
def has_key(self, key: str) -> bool:
return key in self._data
def clear(self) -> None:
self._data.clear()
class OrderedProperties(Properties[_T]):
"""Provide a __getattr__/__setattr__ interface with an OrderedDict
as backing store."""
__slots__ = ()
def __init__(self):
Properties.__init__(self, OrderedDict())
class ReadOnlyProperties(ReadOnlyContainer, Properties[_T]):
"""Provide immutable dict/object attribute to an underlying dictionary."""
__slots__ = ()
def _ordered_dictionary_sort(d, key=None):
"""Sort an OrderedDict in-place."""
items = [(k, d[k]) for k in sorted(d, key=key)]
d.clear()
d.update(items)
OrderedDict = dict
sort_dictionary = _ordered_dictionary_sort
class WeakSequence(Sequence[_T]):
def __init__(self, __elements: Sequence[_T] = ()):
# adapted from weakref.WeakKeyDictionary, prevent reference
# cycles in the collection itself
def _remove(item, selfref=weakref.ref(self)):
self = selfref()
if self is not None:
self._storage.remove(item)
self._remove = _remove
self._storage = [
weakref.ref(element, _remove) for element in __elements
]
def append(self, item):
self._storage.append(weakref.ref(item, self._remove))
def __len__(self):
return len(self._storage)
def __iter__(self):
return (
obj for obj in (ref() for ref in self._storage) if obj is not None
)
def __getitem__(self, index):
try:
obj = self._storage[index]
except KeyError:
raise IndexError("Index %s out of range" % index)
else:
return obj()
class OrderedIdentitySet(IdentitySet):
def __init__(self, iterable: Optional[Iterable[Any]] = None):
IdentitySet.__init__(self)
self._members = OrderedDict()
if iterable:
for o in iterable:
self.add(o)
class PopulateDict(Dict[_KT, _VT]):
"""A dict which populates missing values via a creation function.
Note the creation function takes a key, unlike
collections.defaultdict.
"""
def __init__(self, creator: Callable[[_KT], _VT]):
self.creator = creator
def __missing__(self, key: Any) -> Any:
self[key] = val = self.creator(key)
return val
class WeakPopulateDict(Dict[_KT, _VT]):
"""Like PopulateDict, but assumes a self + a method and does not create
a reference cycle.
"""
def __init__(self, creator_method: types.MethodType):
self.creator = creator_method.__func__
weakself = creator_method.__self__
self.weakself = weakref.ref(weakself)
def __missing__(self, key: Any) -> Any:
self[key] = val = self.creator(self.weakself(), key)
return val
# Define collections that are capable of storing
# ColumnElement objects as hashable keys/elements.
# At this point, these are mostly historical, things
# used to be more complicated.
column_set = set
column_dict = dict
ordered_column_set = OrderedSet
class UniqueAppender(Generic[_T]):
"""Appends items to a collection ensuring uniqueness.
Additional appends() of the same object are ignored. Membership is
determined by identity (``is a``) not equality (``==``).
"""
__slots__ = "data", "_data_appender", "_unique"
data: Union[Iterable[_T], Set[_T], List[_T]]
_data_appender: Callable[[_T], None]
_unique: Dict[int, Literal[True]]
def __init__(
self,
data: Union[Iterable[_T], Set[_T], List[_T]],
via: Optional[str] = None,
):
self.data = data
self._unique = {}
if via:
self._data_appender = getattr(data, via) # type: ignore[assignment] # noqa: E501
elif hasattr(data, "append"):
self._data_appender = cast("List[_T]", data).append # type: ignore[assignment] # noqa: E501
elif hasattr(data, "add"):
self._data_appender = cast("Set[_T]", data).add # type: ignore[assignment] # noqa: E501
def append(self, item: _T) -> None:
id_ = id(item)
if id_ not in self._unique:
self._data_appender(item) # type: ignore[call-arg]
self._unique[id_] = True
def __iter__(self) -> Iterator[_T]:
return iter(self.data)
def coerce_generator_arg(arg: Any) -> List[Any]:
if len(arg) == 1 and isinstance(arg[0], types.GeneratorType):
return list(arg[0])
else:
return cast("List[Any]", arg)
def to_list(x: Any, default: Optional[List[Any]] = None) -> List[Any]:
if x is None:
return default # type: ignore
if not isinstance(x, collections_abc.Iterable) or isinstance(
x, (str, bytes)
):
return [x]
elif isinstance(x, list):
return x
else:
return list(x)
def has_intersection(set_, iterable):
r"""return True if any items of set\_ are present in iterable.
Goes through special effort to ensure __hash__ is not called
on items in iterable that don't support it.
"""
# TODO: optimize, write in C, etc.
return bool(set_.intersection([i for i in iterable if i.__hash__]))
def to_set(x):
if x is None:
return set()
if not isinstance(x, set):
return set(to_list(x))
else:
return x
def to_column_set(x: Any) -> Set[Any]:
if x is None:
return column_set()
if not isinstance(x, column_set):
return column_set(to_list(x))
else:
return x
def update_copy(d, _new=None, **kw):
"""Copy the given dict and update with the given values."""
d = d.copy()
if _new:
d.update(_new)
d.update(**kw)
return d
def flatten_iterator(x: Iterable[_T]) -> Iterator[_T]:
"""Given an iterator of which further sub-elements may also be
iterators, flatten the sub-elements into a single iterator.
"""
elem: _T
for elem in x:
if not isinstance(elem, str) and hasattr(elem, "__iter__"):
yield from flatten_iterator(elem)
else:
yield elem
class LRUCache(typing.MutableMapping[_KT, _VT]):
"""Dictionary with 'squishy' removal of least
recently used items.
Note that either get() or [] should be used here, but
generally its not safe to do an "in" check first as the dictionary
can change subsequent to that call.
"""
__slots__ = (
"capacity",
"threshold",
"size_alert",
"_data",
"_counter",
"_mutex",
)
capacity: int
threshold: float
size_alert: Optional[Callable[[LRUCache[_KT, _VT]], None]]
def __init__(
self,
capacity: int = 100,
threshold: float = 0.5,
size_alert: Optional[Callable[..., None]] = None,
):
self.capacity = capacity
self.threshold = threshold
self.size_alert = size_alert
self._counter = 0
self._mutex = threading.Lock()
self._data: Dict[_KT, Tuple[_KT, _VT, List[int]]] = {}
def _inc_counter(self):
self._counter += 1
return self._counter
@overload
def get(self, key: _KT) -> Optional[_VT]:
...
@overload
def get(self, key: _KT, default: Union[_VT, _T]) -> Union[_VT, _T]:
...
def get(
self, key: _KT, default: Optional[Union[_VT, _T]] = None
) -> Optional[Union[_VT, _T]]:
item = self._data.get(key, default)
if item is not default and item is not None:
item[2][0] = self._inc_counter()
return item[1]
else:
return default
def __getitem__(self, key: _KT) -> _VT:
item = self._data[key]
item[2][0] = self._inc_counter()
return item[1]
def __iter__(self) -> Iterator[_KT]:
return iter(self._data)
def __len__(self) -> int:
return len(self._data)
def values(self) -> ValuesView[_VT]:
return typing.ValuesView({k: i[1] for k, i in self._data.items()})
def __setitem__(self, key: _KT, value: _VT) -> None:
self._data[key] = (key, value, [self._inc_counter()])
self._manage_size()
def __delitem__(self, __v: _KT) -> None:
del self._data[__v]
@property
def size_threshold(self) -> float:
return self.capacity + self.capacity * self.threshold
def _manage_size(self) -> None:
if not self._mutex.acquire(False):
return
try:
size_alert = bool(self.size_alert)
while len(self) > self.capacity + self.capacity * self.threshold:
if size_alert:
size_alert = False
self.size_alert(self) # type: ignore
by_counter = sorted(
self._data.values(),
key=operator.itemgetter(2),
reverse=True,
)
for item in by_counter[self.capacity :]:
try:
del self._data[item[0]]
except KeyError:
# deleted elsewhere; skip
continue
finally:
self._mutex.release()
class _CreateFuncType(Protocol[_T_co]):
def __call__(self) -> _T_co:
...
class _ScopeFuncType(Protocol):
def __call__(self) -> Any:
...
class ScopedRegistry(Generic[_T]):
"""A Registry that can store one or multiple instances of a single
class on the basis of a "scope" function.
The object implements ``__call__`` as the "getter", so by
calling ``myregistry()`` the contained object is returned
for the current scope.
:param createfunc:
a callable that returns a new object to be placed in the registry
:param scopefunc:
a callable that will return a key to store/retrieve an object.
"""
__slots__ = "createfunc", "scopefunc", "registry"
createfunc: _CreateFuncType[_T]
scopefunc: _ScopeFuncType
registry: Any
def __init__(
self, createfunc: Callable[[], _T], scopefunc: Callable[[], Any]
):
"""Construct a new :class:`.ScopedRegistry`.
:param createfunc: A creation function that will generate
a new value for the current scope, if none is present.
:param scopefunc: A function that returns a hashable
token representing the current scope (such as, current
thread identifier).
"""
self.createfunc = createfunc
self.scopefunc = scopefunc
self.registry = {}
def __call__(self) -> _T:
key = self.scopefunc()
try:
return self.registry[key] # type: ignore[no-any-return]
except KeyError:
return self.registry.setdefault(key, self.createfunc()) # type: ignore[no-any-return] # noqa: E501
def has(self) -> bool:
"""Return True if an object is present in the current scope."""
return self.scopefunc() in self.registry
def set(self, obj: _T) -> None:
"""Set the value for the current scope."""
self.registry[self.scopefunc()] = obj
def clear(self) -> None:
"""Clear the current scope, if any."""
try:
del self.registry[self.scopefunc()]
except KeyError:
pass
class ThreadLocalRegistry(ScopedRegistry[_T]):
"""A :class:`.ScopedRegistry` that uses a ``threading.local()``
variable for storage.
"""
def __init__(self, createfunc: Callable[[], _T]):
self.createfunc = createfunc
self.registry = threading.local()
def __call__(self) -> _T:
try:
return self.registry.value # type: ignore[no-any-return]
except AttributeError:
val = self.registry.value = self.createfunc()
return val # type: ignore[no-any-return]
def has(self) -> bool:
return hasattr(self.registry, "value")
def set(self, obj: _T) -> None:
self.registry.value = obj
def clear(self) -> None:
try:
del self.registry.value
except AttributeError:
pass
def has_dupes(sequence, target):
"""Given a sequence and search object, return True if there's more
than one, False if zero or one of them.
"""
# compare to .index version below, this version introduces less function
# overhead and is usually the same speed. At 15000 items (way bigger than
# a relationship-bound collection in memory usually is) it begins to
# fall behind the other version only by microseconds.
c = 0
for item in sequence:
if item is target:
c += 1
if c > 1:
return True
return False
# .index version. the two __contains__ calls as well
# as .index() and isinstance() slow this down.
# def has_dupes(sequence, target):
# if target not in sequence:
# return False
# elif not isinstance(sequence, collections_abc.Sequence):
# return False
#
# idx = sequence.index(target)
# return target in sequence[idx + 1:]