You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
287 lines
8.0 KiB
287 lines
8.0 KiB
7 months ago
|
from __future__ import annotations
|
||
|
|
||
|
# built-in
|
||
|
import codecs
|
||
|
import math
|
||
|
from collections import Counter
|
||
|
from fractions import Fraction
|
||
|
from itertools import groupby, permutations
|
||
|
from typing import Any, Sequence, TypeVar
|
||
|
|
||
|
# app
|
||
|
from .base import Base as _Base
|
||
|
|
||
|
|
||
|
try:
|
||
|
# built-in
|
||
|
import lzma
|
||
|
except ImportError:
|
||
|
lzma = None # type: ignore[assignment]
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
'ArithNCD', 'LZMANCD', 'BZ2NCD', 'RLENCD', 'BWTRLENCD', 'ZLIBNCD',
|
||
|
'SqrtNCD', 'EntropyNCD',
|
||
|
|
||
|
'bz2_ncd', 'lzma_ncd', 'arith_ncd', 'rle_ncd', 'bwtrle_ncd', 'zlib_ncd',
|
||
|
'sqrt_ncd', 'entropy_ncd',
|
||
|
]
|
||
|
T = TypeVar('T')
|
||
|
|
||
|
|
||
|
class _NCDBase(_Base):
|
||
|
"""Normalized compression distance (NCD)
|
||
|
|
||
|
https://articles.orsinium.dev/other/ncd/
|
||
|
https://en.wikipedia.org/wiki/Normalized_compression_distance#Normalized_compression_distance
|
||
|
"""
|
||
|
qval = 1
|
||
|
|
||
|
def __init__(self, qval: int = 1) -> None:
|
||
|
self.qval = qval
|
||
|
|
||
|
def maximum(self, *sequences) -> int:
|
||
|
return 1
|
||
|
|
||
|
def _get_size(self, data: str) -> float:
|
||
|
return len(self._compress(data))
|
||
|
|
||
|
def _compress(self, data: str) -> Any:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __call__(self, *sequences) -> float:
|
||
|
if not sequences:
|
||
|
return 0
|
||
|
sequences = self._get_sequences(*sequences)
|
||
|
|
||
|
concat_len = float('Inf')
|
||
|
empty = type(sequences[0])()
|
||
|
for mutation in permutations(sequences):
|
||
|
if isinstance(empty, (str, bytes)):
|
||
|
data = empty.join(mutation)
|
||
|
else:
|
||
|
data = sum(mutation, empty)
|
||
|
concat_len = min(concat_len, self._get_size(data)) # type: ignore[arg-type]
|
||
|
|
||
|
compressed_lens = [self._get_size(s) for s in sequences]
|
||
|
max_len = max(compressed_lens)
|
||
|
if max_len == 0:
|
||
|
return 0
|
||
|
return (concat_len - min(compressed_lens) * (len(sequences) - 1)) / max_len
|
||
|
|
||
|
|
||
|
class _BinaryNCDBase(_NCDBase):
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
pass
|
||
|
|
||
|
def __call__(self, *sequences) -> float:
|
||
|
if not sequences:
|
||
|
return 0
|
||
|
if isinstance(sequences[0], str):
|
||
|
sequences = tuple(s.encode('utf-8') for s in sequences)
|
||
|
return super().__call__(*sequences)
|
||
|
|
||
|
|
||
|
class ArithNCD(_NCDBase):
|
||
|
"""Arithmetic coding
|
||
|
|
||
|
https://github.com/gw-c/arith
|
||
|
http://www.drdobbs.com/cpp/data-compression-with-arithmetic-encodin/240169251
|
||
|
https://en.wikipedia.org/wiki/Arithmetic_coding
|
||
|
"""
|
||
|
|
||
|
def __init__(self, base: int = 2, terminator: str | None = None, qval: int = 1) -> None:
|
||
|
self.base = base
|
||
|
self.terminator = terminator
|
||
|
self.qval = qval
|
||
|
|
||
|
def _make_probs(self, *sequences) -> dict[str, tuple[Fraction, Fraction]]:
|
||
|
"""
|
||
|
https://github.com/gw-c/arith/blob/master/arith.py
|
||
|
"""
|
||
|
sequences = self._get_counters(*sequences)
|
||
|
counts = self._sum_counters(*sequences)
|
||
|
if self.terminator is not None:
|
||
|
counts[self.terminator] = 1
|
||
|
total_letters = sum(counts.values())
|
||
|
|
||
|
prob_pairs = {}
|
||
|
cumulative_count = 0
|
||
|
for char, current_count in counts.most_common():
|
||
|
prob_pairs[char] = (
|
||
|
Fraction(cumulative_count, total_letters),
|
||
|
Fraction(current_count, total_letters),
|
||
|
)
|
||
|
cumulative_count += current_count
|
||
|
assert cumulative_count == total_letters
|
||
|
return prob_pairs
|
||
|
|
||
|
def _get_range(
|
||
|
self,
|
||
|
data: str,
|
||
|
probs: dict[str, tuple[Fraction, Fraction]],
|
||
|
) -> tuple[Fraction, Fraction]:
|
||
|
if self.terminator is not None:
|
||
|
if self.terminator in data:
|
||
|
data = data.replace(self.terminator, '')
|
||
|
data += self.terminator
|
||
|
|
||
|
start = Fraction(0, 1)
|
||
|
width = Fraction(1, 1)
|
||
|
for char in data:
|
||
|
prob_start, prob_width = probs[char]
|
||
|
start += prob_start * width
|
||
|
width *= prob_width
|
||
|
return start, start + width
|
||
|
|
||
|
def _compress(self, data: str) -> Fraction:
|
||
|
probs = self._make_probs(data)
|
||
|
start, end = self._get_range(data=data, probs=probs)
|
||
|
output_fraction = Fraction(0, 1)
|
||
|
output_denominator = 1
|
||
|
while not (start <= output_fraction < end):
|
||
|
output_numerator = 1 + ((start.numerator * output_denominator) // start.denominator)
|
||
|
output_fraction = Fraction(output_numerator, output_denominator)
|
||
|
output_denominator *= 2
|
||
|
return output_fraction
|
||
|
|
||
|
def _get_size(self, data: str) -> int:
|
||
|
numerator = self._compress(data).numerator
|
||
|
if numerator == 0:
|
||
|
return 0
|
||
|
return math.ceil(math.log(numerator, self.base))
|
||
|
|
||
|
|
||
|
class RLENCD(_NCDBase):
|
||
|
"""Run-length encoding
|
||
|
|
||
|
https://en.wikipedia.org/wiki/Run-length_encoding
|
||
|
"""
|
||
|
|
||
|
def _compress(self, data: Sequence) -> str:
|
||
|
new_data = []
|
||
|
for k, g in groupby(data):
|
||
|
n = len(list(g))
|
||
|
if n > 2:
|
||
|
new_data.append(str(n) + k)
|
||
|
elif n == 1:
|
||
|
new_data.append(k)
|
||
|
else:
|
||
|
new_data.append(2 * k)
|
||
|
return ''.join(new_data)
|
||
|
|
||
|
|
||
|
class BWTRLENCD(RLENCD):
|
||
|
"""
|
||
|
https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
|
||
|
https://en.wikipedia.org/wiki/Run-length_encoding
|
||
|
"""
|
||
|
|
||
|
def __init__(self, terminator: str = '\0') -> None:
|
||
|
self.terminator: Any = terminator
|
||
|
|
||
|
def _compress(self, data: str) -> str:
|
||
|
if not data:
|
||
|
data = self.terminator
|
||
|
elif self.terminator not in data:
|
||
|
data += self.terminator
|
||
|
modified = sorted(data[i:] + data[:i] for i in range(len(data)))
|
||
|
empty = type(data)()
|
||
|
data = empty.join(subdata[-1] for subdata in modified)
|
||
|
return super()._compress(data)
|
||
|
|
||
|
|
||
|
# -- NORMAL COMPRESSORS -- #
|
||
|
|
||
|
|
||
|
class SqrtNCD(_NCDBase):
|
||
|
"""Square Root based NCD
|
||
|
|
||
|
Size of compressed data equals to sum of square roots of counts of every
|
||
|
element in the input sequence.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, qval: int = 1) -> None:
|
||
|
self.qval = qval
|
||
|
|
||
|
def _compress(self, data: Sequence[T]) -> dict[T, float]:
|
||
|
return {element: math.sqrt(count) for element, count in Counter(data).items()}
|
||
|
|
||
|
def _get_size(self, data: Sequence) -> float:
|
||
|
return sum(self._compress(data).values())
|
||
|
|
||
|
|
||
|
class EntropyNCD(_NCDBase):
|
||
|
"""Entropy based NCD
|
||
|
|
||
|
Get Entropy of input sequence as a size of compressed data.
|
||
|
|
||
|
https://en.wikipedia.org/wiki/Entropy_(information_theory)
|
||
|
https://en.wikipedia.org/wiki/Entropy_encoding
|
||
|
"""
|
||
|
|
||
|
def __init__(self, qval: int = 1, coef: int = 1, base: int = 2) -> None:
|
||
|
self.qval = qval
|
||
|
self.coef = coef
|
||
|
self.base = base
|
||
|
|
||
|
def _compress(self, data: Sequence) -> float:
|
||
|
total_count = len(data)
|
||
|
entropy = 0.0
|
||
|
for element_count in Counter(data).values():
|
||
|
p = element_count / total_count
|
||
|
entropy -= p * math.log(p, self.base)
|
||
|
assert entropy >= 0
|
||
|
return entropy
|
||
|
|
||
|
# # redundancy:
|
||
|
# unique_count = len(counter)
|
||
|
# absolute_entropy = math.log(unique_count, 2) / unique_count
|
||
|
# return absolute_entropy - entropy / unique_count
|
||
|
|
||
|
def _get_size(self, data: Sequence) -> float:
|
||
|
return self.coef + self._compress(data)
|
||
|
|
||
|
|
||
|
# -- BINARY COMPRESSORS -- #
|
||
|
|
||
|
|
||
|
class BZ2NCD(_BinaryNCDBase):
|
||
|
"""
|
||
|
https://en.wikipedia.org/wiki/Bzip2
|
||
|
"""
|
||
|
|
||
|
def _compress(self, data: str | bytes) -> bytes:
|
||
|
return codecs.encode(data, 'bz2_codec')[15:]
|
||
|
|
||
|
|
||
|
class LZMANCD(_BinaryNCDBase):
|
||
|
"""
|
||
|
https://en.wikipedia.org/wiki/LZMA
|
||
|
"""
|
||
|
|
||
|
def _compress(self, data: bytes) -> bytes:
|
||
|
if not lzma:
|
||
|
raise ImportError('Please, install the PylibLZMA module')
|
||
|
return lzma.compress(data)[14:]
|
||
|
|
||
|
|
||
|
class ZLIBNCD(_BinaryNCDBase):
|
||
|
"""
|
||
|
https://en.wikipedia.org/wiki/Zlib
|
||
|
"""
|
||
|
|
||
|
def _compress(self, data: str | bytes) -> bytes:
|
||
|
return codecs.encode(data, 'zlib_codec')[2:]
|
||
|
|
||
|
|
||
|
arith_ncd = ArithNCD()
|
||
|
bwtrle_ncd = BWTRLENCD()
|
||
|
bz2_ncd = BZ2NCD()
|
||
|
lzma_ncd = LZMANCD()
|
||
|
rle_ncd = RLENCD()
|
||
|
zlib_ncd = ZLIBNCD()
|
||
|
sqrt_ncd = SqrtNCD()
|
||
|
entropy_ncd = EntropyNCD()
|