You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
848 lines
27 KiB
848 lines
27 KiB
6 months ago
|
from __future__ import annotations
|
||
|
|
||
|
# built-in
|
||
|
from collections import defaultdict
|
||
|
from itertools import zip_longest
|
||
|
from typing import Any, Sequence, TypeVar
|
||
|
|
||
|
# app
|
||
|
from .base import Base as _Base, BaseSimilarity as _BaseSimilarity
|
||
|
from .types import SimFunc, TestFunc
|
||
|
|
||
|
|
||
|
try:
|
||
|
# external
|
||
|
import numpy
|
||
|
except ImportError:
|
||
|
numpy = None # type: ignore[assignment]
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
'Hamming', 'MLIPNS',
|
||
|
'Levenshtein', 'DamerauLevenshtein',
|
||
|
'Jaro', 'JaroWinkler', 'StrCmp95',
|
||
|
'NeedlemanWunsch', 'Gotoh', 'SmithWaterman',
|
||
|
|
||
|
'hamming', 'mlipns',
|
||
|
'levenshtein', 'damerau_levenshtein',
|
||
|
'jaro', 'jaro_winkler', 'strcmp95',
|
||
|
'needleman_wunsch', 'gotoh', 'smith_waterman',
|
||
|
]
|
||
|
T = TypeVar('T')
|
||
|
|
||
|
|
||
|
class Hamming(_Base):
|
||
|
"""
|
||
|
Compute the Hamming distance between the two or more sequences.
|
||
|
The Hamming distance is the number of differing items in ordered sequences.
|
||
|
|
||
|
https://en.wikipedia.org/wiki/Hamming_distance
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
qval: int = 1,
|
||
|
test_func: TestFunc | None = None,
|
||
|
truncate: bool = False,
|
||
|
external: bool = True,
|
||
|
) -> None:
|
||
|
self.qval = qval
|
||
|
self.test_func = test_func or self._ident
|
||
|
self.truncate = truncate
|
||
|
self.external = external
|
||
|
|
||
|
def __call__(self, *sequences: Sequence[object]) -> int:
|
||
|
sequences = self._get_sequences(*sequences)
|
||
|
|
||
|
result = self.quick_answer(*sequences)
|
||
|
if result is not None:
|
||
|
assert isinstance(result, int)
|
||
|
return result
|
||
|
|
||
|
_zip = zip if self.truncate else zip_longest
|
||
|
return sum(not self.test_func(*es) for es in _zip(*sequences))
|
||
|
|
||
|
|
||
|
class Levenshtein(_Base):
|
||
|
"""
|
||
|
Compute the absolute Levenshtein distance between the two sequences.
|
||
|
The Levenshtein distance is the minimum number of edit operations necessary
|
||
|
for transforming one sequence into the other. The edit operations allowed are:
|
||
|
|
||
|
* deletion: ABC -> BC, AC, AB
|
||
|
* insertion: ABC -> ABCD, EABC, AEBC..
|
||
|
* substitution: ABC -> ABE, ADC, FBC..
|
||
|
|
||
|
https://en.wikipedia.org/wiki/Levenshtein_distance
|
||
|
TODO: https://gist.github.com/kylebgorman/1081951/9b38b7743a3cb5167ab2c6608ac8eea7fc629dca
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
qval: int = 1,
|
||
|
test_func: TestFunc | None = None,
|
||
|
external: bool = True,
|
||
|
) -> None:
|
||
|
self.qval = qval
|
||
|
self.test_func = test_func or self._ident
|
||
|
self.external = external
|
||
|
|
||
|
def _recursive(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||
|
# TODO: more than 2 sequences support
|
||
|
if not s1 or not s2:
|
||
|
return len(s1) + len(s2)
|
||
|
|
||
|
if self.test_func(s1[-1], s2[-1]):
|
||
|
return self(s1[:-1], s2[:-1])
|
||
|
|
||
|
# deletion/insertion
|
||
|
d = min(
|
||
|
self(s1[:-1], s2),
|
||
|
self(s1, s2[:-1]),
|
||
|
)
|
||
|
# substitution
|
||
|
s = self(s1[:-1], s2[:-1])
|
||
|
return min(d, s) + 1
|
||
|
|
||
|
def _cycled(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||
|
"""
|
||
|
source:
|
||
|
https://github.com/jamesturk/jellyfish/blob/master/jellyfish/_jellyfish.py#L18
|
||
|
"""
|
||
|
rows = len(s1) + 1
|
||
|
cols = len(s2) + 1
|
||
|
prev = None
|
||
|
cur: Any
|
||
|
if numpy:
|
||
|
cur = numpy.arange(cols)
|
||
|
else:
|
||
|
cur = range(cols)
|
||
|
|
||
|
for r in range(1, rows):
|
||
|
prev, cur = cur, [r] + [0] * (cols - 1)
|
||
|
for c in range(1, cols):
|
||
|
deletion = prev[c] + 1
|
||
|
insertion = cur[c - 1] + 1
|
||
|
dist = self.test_func(s1[r - 1], s2[c - 1])
|
||
|
edit = prev[c - 1] + (not dist)
|
||
|
cur[c] = min(edit, deletion, insertion)
|
||
|
return int(cur[-1])
|
||
|
|
||
|
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||
|
s1, s2 = self._get_sequences(s1, s2)
|
||
|
|
||
|
result = self.quick_answer(s1, s2)
|
||
|
if result is not None:
|
||
|
assert isinstance(result, int)
|
||
|
return result
|
||
|
|
||
|
return self._cycled(s1, s2)
|
||
|
|
||
|
|
||
|
class DamerauLevenshtein(_Base):
|
||
|
"""
|
||
|
Compute the absolute Damerau-Levenshtein distance between the two sequences.
|
||
|
The Damerau-Levenshtein distance is the minimum number of edit operations necessary
|
||
|
for transforming one sequence into the other. The edit operations allowed are:
|
||
|
|
||
|
* deletion: ABC -> BC, AC, AB
|
||
|
* insertion: ABC -> ABCD, EABC, AEBC..
|
||
|
* substitution: ABC -> ABE, ADC, FBC..
|
||
|
* transposition: ABC -> ACB, BAC
|
||
|
|
||
|
If `restricted=False`, it will calculate unrestricted distance,
|
||
|
where the same character can be touched more than once.
|
||
|
So the distance between BA and ACB is 2: BA -> AB -> ACB.
|
||
|
|
||
|
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
qval: int = 1,
|
||
|
test_func: TestFunc | None = None,
|
||
|
external: bool = True,
|
||
|
restricted: bool = True,
|
||
|
) -> None:
|
||
|
self.qval = qval
|
||
|
self.test_func = test_func or self._ident
|
||
|
self.external = external
|
||
|
self.restricted = restricted
|
||
|
|
||
|
def _numpy(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||
|
# TODO: doesn't pass tests, need improve
|
||
|
d = numpy.zeros([len(s1) + 1, len(s2) + 1], dtype=int)
|
||
|
|
||
|
# matrix
|
||
|
for i in range(-1, len(s1) + 1):
|
||
|
d[i][-1] = i + 1
|
||
|
for j in range(-1, len(s2) + 1):
|
||
|
d[-1][j] = j + 1
|
||
|
|
||
|
for i, cs1 in enumerate(s1):
|
||
|
for j, cs2 in enumerate(s2):
|
||
|
cost = int(not self.test_func(cs1, cs2))
|
||
|
# ^ 0 if equal, 1 otherwise
|
||
|
|
||
|
d[i][j] = min(
|
||
|
d[i - 1][j] + 1, # deletion
|
||
|
d[i][j - 1] + 1, # insertion
|
||
|
d[i - 1][j - 1] + cost, # substitution
|
||
|
)
|
||
|
|
||
|
# transposition
|
||
|
if not i or not j:
|
||
|
continue
|
||
|
if not self.test_func(cs1, s2[j - 1]):
|
||
|
continue
|
||
|
d[i][j] = min(
|
||
|
d[i][j],
|
||
|
d[i - 2][j - 2] + cost,
|
||
|
)
|
||
|
|
||
|
return d[len(s1) - 1][len(s2) - 1]
|
||
|
|
||
|
def _pure_python_unrestricted(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||
|
"""https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
|
||
|
"""
|
||
|
d: dict[tuple[int, int], int] = {}
|
||
|
da: dict[T, int] = {}
|
||
|
|
||
|
len1 = len(s1)
|
||
|
len2 = len(s2)
|
||
|
|
||
|
maxdist = len1 + len2
|
||
|
d[-1, -1] = maxdist
|
||
|
|
||
|
# matrix
|
||
|
for i in range(len(s1) + 1):
|
||
|
d[i, -1] = maxdist
|
||
|
d[i, 0] = i
|
||
|
for j in range(len(s2) + 1):
|
||
|
d[-1, j] = maxdist
|
||
|
d[0, j] = j
|
||
|
|
||
|
for i, cs1 in enumerate(s1, start=1):
|
||
|
db = 0
|
||
|
for j, cs2 in enumerate(s2, start=1):
|
||
|
i1 = da.get(cs2, 0)
|
||
|
j1 = db
|
||
|
if self.test_func(cs1, cs2):
|
||
|
cost = 0
|
||
|
db = j
|
||
|
else:
|
||
|
cost = 1
|
||
|
|
||
|
d[i, j] = min(
|
||
|
d[i - 1, j - 1] + cost, # substitution
|
||
|
d[i, j - 1] + 1, # insertion
|
||
|
d[i - 1, j] + 1, # deletion
|
||
|
d[i1 - 1, j1 - 1] + (i - i1) - 1 + (j - j1), # transposition
|
||
|
)
|
||
|
da[cs1] = i
|
||
|
|
||
|
return d[len1, len2]
|
||
|
|
||
|
def _pure_python_restricted(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||
|
"""
|
||
|
https://www.guyrutenberg.com/2008/12/15/damerau-levenshtein-distance-in-python/
|
||
|
"""
|
||
|
d: dict[tuple[int, int], int] = {}
|
||
|
|
||
|
# matrix
|
||
|
for i in range(-1, len(s1) + 1):
|
||
|
d[i, -1] = i + 1
|
||
|
for j in range(-1, len(s2) + 1):
|
||
|
d[-1, j] = j + 1
|
||
|
|
||
|
for i, cs1 in enumerate(s1):
|
||
|
for j, cs2 in enumerate(s2):
|
||
|
cost = int(not self.test_func(cs1, cs2))
|
||
|
# ^ 0 if equal, 1 otherwise
|
||
|
|
||
|
d[i, j] = min(
|
||
|
d[i - 1, j] + 1, # deletion
|
||
|
d[i, j - 1] + 1, # insertion
|
||
|
d[i - 1, j - 1] + cost, # substitution
|
||
|
)
|
||
|
|
||
|
# transposition
|
||
|
if not i or not j:
|
||
|
continue
|
||
|
if not self.test_func(cs1, s2[j - 1]):
|
||
|
continue
|
||
|
if not self.test_func(s1[i - 1], cs2):
|
||
|
continue
|
||
|
d[i, j] = min(
|
||
|
d[i, j],
|
||
|
d[i - 2, j - 2] + cost,
|
||
|
)
|
||
|
|
||
|
return d[len(s1) - 1, len(s2) - 1]
|
||
|
|
||
|
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||
|
s1, s2 = self._get_sequences(s1, s2)
|
||
|
|
||
|
result = self.quick_answer(s1, s2)
|
||
|
if result is not None:
|
||
|
return result # type: ignore[return-value]
|
||
|
|
||
|
# if numpy:
|
||
|
# return self._numpy(s1, s2)
|
||
|
# else:
|
||
|
if self.restricted:
|
||
|
return self._pure_python_restricted(s1, s2)
|
||
|
return self._pure_python_unrestricted(s1, s2)
|
||
|
|
||
|
|
||
|
class JaroWinkler(_BaseSimilarity):
|
||
|
"""
|
||
|
Computes the Jaro-Winkler measure between two strings.
|
||
|
The Jaro-Winkler measure is designed to capture cases where two strings
|
||
|
have a low Jaro score, but share a prefix.
|
||
|
and thus are likely to match.
|
||
|
|
||
|
https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
|
||
|
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/jaro.js
|
||
|
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/jaro-winkler.js
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
long_tolerance: bool = False,
|
||
|
winklerize: bool = True,
|
||
|
qval: int = 1,
|
||
|
external: bool = True,
|
||
|
) -> None:
|
||
|
self.qval = qval
|
||
|
self.long_tolerance = long_tolerance
|
||
|
self.winklerize = winklerize
|
||
|
self.external = external
|
||
|
|
||
|
def maximum(self, *sequences: Sequence[object]) -> int:
|
||
|
return 1
|
||
|
|
||
|
def __call__(self, s1: Sequence[T], s2: Sequence[T], prefix_weight: float = 0.1) -> float:
|
||
|
s1, s2 = self._get_sequences(s1, s2)
|
||
|
|
||
|
result = self.quick_answer(s1, s2)
|
||
|
if result is not None:
|
||
|
return result
|
||
|
|
||
|
s1_len = len(s1)
|
||
|
s2_len = len(s2)
|
||
|
|
||
|
if not s1_len or not s2_len:
|
||
|
return 0.0
|
||
|
|
||
|
min_len = min(s1_len, s2_len)
|
||
|
search_range = max(s1_len, s2_len)
|
||
|
search_range = (search_range // 2) - 1
|
||
|
if search_range < 0:
|
||
|
search_range = 0
|
||
|
|
||
|
s1_flags = [False] * s1_len
|
||
|
s2_flags = [False] * s2_len
|
||
|
|
||
|
# looking only within search range, count & flag matched pairs
|
||
|
common_chars = 0
|
||
|
for i, s1_ch in enumerate(s1):
|
||
|
low = max(0, i - search_range)
|
||
|
hi = min(i + search_range, s2_len - 1)
|
||
|
for j in range(low, hi + 1):
|
||
|
if not s2_flags[j] and s2[j] == s1_ch:
|
||
|
s1_flags[i] = s2_flags[j] = True
|
||
|
common_chars += 1
|
||
|
break
|
||
|
|
||
|
# short circuit if no characters match
|
||
|
if not common_chars:
|
||
|
return 0.0
|
||
|
|
||
|
# count transpositions
|
||
|
k = trans_count = 0
|
||
|
for i, s1_f in enumerate(s1_flags):
|
||
|
if s1_f:
|
||
|
for j in range(k, s2_len):
|
||
|
if s2_flags[j]:
|
||
|
k = j + 1
|
||
|
break
|
||
|
if s1[i] != s2[j]:
|
||
|
trans_count += 1
|
||
|
trans_count //= 2
|
||
|
|
||
|
# adjust for similarities in nonmatched characters
|
||
|
weight = common_chars / s1_len + common_chars / s2_len
|
||
|
weight += (common_chars - trans_count) / common_chars
|
||
|
weight /= 3
|
||
|
|
||
|
# stop to boost if strings are not similar
|
||
|
if not self.winklerize:
|
||
|
return weight
|
||
|
if weight <= 0.7:
|
||
|
return weight
|
||
|
|
||
|
# winkler modification
|
||
|
# adjust for up to first 4 chars in common
|
||
|
j = min(min_len, 4)
|
||
|
i = 0
|
||
|
while i < j and s1[i] == s2[i]:
|
||
|
i += 1
|
||
|
if i:
|
||
|
weight += i * prefix_weight * (1.0 - weight)
|
||
|
|
||
|
# optionally adjust for long strings
|
||
|
# after agreeing beginning chars, at least two or more must agree and
|
||
|
# agreed characters must be > half of remaining characters
|
||
|
if not self.long_tolerance or min_len <= 4:
|
||
|
return weight
|
||
|
if common_chars <= i + 1 or 2 * common_chars < min_len + i:
|
||
|
return weight
|
||
|
tmp = (common_chars - i - 1) / (s1_len + s2_len - i * 2 + 2)
|
||
|
weight += (1.0 - weight) * tmp
|
||
|
return weight
|
||
|
|
||
|
|
||
|
class Jaro(JaroWinkler):
|
||
|
def __init__(
|
||
|
self,
|
||
|
long_tolerance: bool = False,
|
||
|
qval: int = 1,
|
||
|
external: bool = True,
|
||
|
) -> None:
|
||
|
super().__init__(
|
||
|
long_tolerance=long_tolerance,
|
||
|
winklerize=False,
|
||
|
qval=qval,
|
||
|
external=external,
|
||
|
)
|
||
|
|
||
|
|
||
|
class NeedlemanWunsch(_BaseSimilarity):
|
||
|
"""
|
||
|
Computes the Needleman-Wunsch measure between two strings.
|
||
|
The Needleman-Wunsch generalizes the Levenshtein distance and considers global
|
||
|
alignment between two strings. Specifically, it is computed by assigning
|
||
|
a score to each alignment between two input strings and choosing the
|
||
|
score of the best alignment, that is, the maximal score.
|
||
|
An alignment between two strings is a set of correspondences between the
|
||
|
characters of between them, allowing for gaps.
|
||
|
|
||
|
https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
gap_cost: float = 1.0,
|
||
|
sim_func: SimFunc = None,
|
||
|
qval: int = 1,
|
||
|
external: bool = True,
|
||
|
) -> None:
|
||
|
self.qval = qval
|
||
|
self.gap_cost = gap_cost
|
||
|
if sim_func:
|
||
|
self.sim_func = sim_func
|
||
|
else:
|
||
|
self.sim_func = self._ident
|
||
|
self.external = external
|
||
|
|
||
|
def minimum(self, *sequences: Sequence[object]) -> float:
|
||
|
return -max(map(len, sequences)) * self.gap_cost
|
||
|
|
||
|
def maximum(self, *sequences: Sequence[object]) -> float:
|
||
|
return max(map(len, sequences))
|
||
|
|
||
|
def distance(self, *sequences: Sequence[object]) -> float:
|
||
|
"""Get distance between sequences
|
||
|
"""
|
||
|
return -1 * self.similarity(*sequences)
|
||
|
|
||
|
def normalized_distance(self, *sequences: Sequence[object]) -> float:
|
||
|
"""Get distance from 0 to 1
|
||
|
"""
|
||
|
minimum = self.minimum(*sequences)
|
||
|
maximum = self.maximum(*sequences)
|
||
|
if maximum == 0:
|
||
|
return 0
|
||
|
return (self.distance(*sequences) - minimum) / (maximum - minimum)
|
||
|
|
||
|
def normalized_similarity(self, *sequences: Sequence[object]) -> float:
|
||
|
"""Get similarity from 0 to 1
|
||
|
"""
|
||
|
minimum = self.minimum(*sequences)
|
||
|
maximum = self.maximum(*sequences)
|
||
|
if maximum == 0:
|
||
|
return 1
|
||
|
return (self.similarity(*sequences) - minimum) / (maximum * 2)
|
||
|
|
||
|
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> float:
|
||
|
if not numpy:
|
||
|
raise ImportError('Please, install numpy for Needleman-Wunsch measure')
|
||
|
|
||
|
s1, s2 = self._get_sequences(s1, s2)
|
||
|
|
||
|
# result = self.quick_answer(s1, s2)
|
||
|
# if result is not None:
|
||
|
# return result * self.maximum(s1, s2)
|
||
|
|
||
|
dist_mat = numpy.zeros(
|
||
|
(len(s1) + 1, len(s2) + 1),
|
||
|
dtype=float,
|
||
|
)
|
||
|
# DP initialization
|
||
|
for i in range(len(s1) + 1):
|
||
|
dist_mat[i, 0] = -(i * self.gap_cost)
|
||
|
# DP initialization
|
||
|
for j in range(len(s2) + 1):
|
||
|
dist_mat[0, j] = -(j * self.gap_cost)
|
||
|
# Needleman-Wunsch DP calculation
|
||
|
for i, c1 in enumerate(s1, 1):
|
||
|
for j, c2 in enumerate(s2, 1):
|
||
|
match = dist_mat[i - 1, j - 1] + self.sim_func(c1, c2)
|
||
|
delete = dist_mat[i - 1, j] - self.gap_cost
|
||
|
insert = dist_mat[i, j - 1] - self.gap_cost
|
||
|
dist_mat[i, j] = max(match, delete, insert)
|
||
|
return dist_mat[dist_mat.shape[0] - 1, dist_mat.shape[1] - 1]
|
||
|
|
||
|
|
||
|
class SmithWaterman(_BaseSimilarity):
|
||
|
"""
|
||
|
Computes the Smith-Waterman measure between two strings.
|
||
|
The Smith-Waterman algorithm performs local sequence alignment;
|
||
|
that is, for determining similar regions between two strings.
|
||
|
Instead of looking at the total sequence, the Smith-Waterman algorithm compares
|
||
|
segments of all possible lengths and optimizes the similarity measure.
|
||
|
|
||
|
https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm
|
||
|
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/smith-waterman.js
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
gap_cost: float = 1.0,
|
||
|
sim_func: SimFunc = None,
|
||
|
qval: int = 1,
|
||
|
external: bool = True,
|
||
|
) -> None:
|
||
|
self.qval = qval
|
||
|
self.gap_cost = gap_cost
|
||
|
self.sim_func = sim_func or self._ident
|
||
|
self.external = external
|
||
|
|
||
|
def maximum(self, *sequences: Sequence[object]) -> int:
|
||
|
return min(map(len, sequences))
|
||
|
|
||
|
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> float:
|
||
|
if not numpy:
|
||
|
raise ImportError('Please, install numpy for Smith-Waterman measure')
|
||
|
|
||
|
s1, s2 = self._get_sequences(s1, s2)
|
||
|
|
||
|
result = self.quick_answer(s1, s2)
|
||
|
if result is not None:
|
||
|
return result
|
||
|
|
||
|
dist_mat = numpy.zeros(
|
||
|
(len(s1) + 1, len(s2) + 1),
|
||
|
dtype=float,
|
||
|
)
|
||
|
for i, sc1 in enumerate(s1, start=1):
|
||
|
for j, sc2 in enumerate(s2, start=1):
|
||
|
# The score for substituting the letter a[i - 1] for b[j - 1].
|
||
|
# Generally low for mismatch, high for match.
|
||
|
match = dist_mat[i - 1, j - 1] + self.sim_func(sc1, sc2)
|
||
|
# The scores for for introducing extra letters in one of the strings
|
||
|
# (or by symmetry, deleting them from the other).
|
||
|
delete = dist_mat[i - 1, j] - self.gap_cost
|
||
|
insert = dist_mat[i, j - 1] - self.gap_cost
|
||
|
dist_mat[i, j] = max(0, match, delete, insert)
|
||
|
return dist_mat[dist_mat.shape[0] - 1, dist_mat.shape[1] - 1]
|
||
|
|
||
|
|
||
|
class Gotoh(NeedlemanWunsch):
|
||
|
"""Gotoh score
|
||
|
Gotoh's algorithm is essentially Needleman-Wunsch with affine gap
|
||
|
penalties:
|
||
|
https://www.cs.umd.edu/class/spring2003/cmsc838t/papers/gotoh1982.pdf
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
gap_open: int = 1,
|
||
|
gap_ext: float = 0.4,
|
||
|
sim_func: SimFunc = None,
|
||
|
qval: int = 1,
|
||
|
external: bool = True,
|
||
|
) -> None:
|
||
|
self.qval = qval
|
||
|
self.gap_open = gap_open
|
||
|
self.gap_ext = gap_ext
|
||
|
if sim_func:
|
||
|
self.sim_func = sim_func
|
||
|
else:
|
||
|
self.sim_func = self._ident
|
||
|
self.external = external
|
||
|
|
||
|
def minimum(self, *sequences: Sequence[object]) -> int:
|
||
|
return -min(map(len, sequences))
|
||
|
|
||
|
def maximum(self, *sequences: Sequence[object]) -> int:
|
||
|
return min(map(len, sequences))
|
||
|
|
||
|
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> float:
|
||
|
if not numpy:
|
||
|
raise ImportError('Please, install numpy for Gotoh measure')
|
||
|
|
||
|
s1, s2 = self._get_sequences(s1, s2)
|
||
|
|
||
|
# result = self.quick_answer(s1, s2)
|
||
|
# if result is not None:
|
||
|
# return result * self.maximum(s1, s2)
|
||
|
|
||
|
len_s1 = len(s1)
|
||
|
len_s2 = len(s2)
|
||
|
d_mat = numpy.zeros((len_s1 + 1, len_s2 + 1), dtype=float)
|
||
|
p_mat = numpy.zeros((len_s1 + 1, len_s2 + 1), dtype=float)
|
||
|
q_mat = numpy.zeros((len_s1 + 1, len_s2 + 1), dtype=float)
|
||
|
|
||
|
d_mat[0, 0] = 0
|
||
|
p_mat[0, 0] = float('-inf')
|
||
|
q_mat[0, 0] = float('-inf')
|
||
|
for i in range(1, len_s1 + 1):
|
||
|
d_mat[i, 0] = float('-inf')
|
||
|
p_mat[i, 0] = -self.gap_open - self.gap_ext * (i - 1)
|
||
|
q_mat[i, 0] = float('-inf')
|
||
|
q_mat[i, 1] = -self.gap_open
|
||
|
for j in range(1, len_s2 + 1):
|
||
|
d_mat[0, j] = float('-inf')
|
||
|
p_mat[0, j] = float('-inf')
|
||
|
p_mat[1, j] = -self.gap_open
|
||
|
q_mat[0, j] = -self.gap_open - self.gap_ext * (j - 1)
|
||
|
|
||
|
for i, sc1 in enumerate(s1, start=1):
|
||
|
for j, sc2 in enumerate(s2, start=1):
|
||
|
sim_val = self.sim_func(sc1, sc2)
|
||
|
d_mat[i, j] = max(
|
||
|
d_mat[i - 1, j - 1] + sim_val,
|
||
|
p_mat[i - 1, j - 1] + sim_val,
|
||
|
q_mat[i - 1, j - 1] + sim_val,
|
||
|
)
|
||
|
p_mat[i, j] = max(
|
||
|
d_mat[i - 1, j] - self.gap_open,
|
||
|
p_mat[i - 1, j] - self.gap_ext,
|
||
|
)
|
||
|
q_mat[i, j] = max(
|
||
|
d_mat[i, j - 1] - self.gap_open,
|
||
|
q_mat[i, j - 1] - self.gap_ext,
|
||
|
)
|
||
|
|
||
|
i, j = (n - 1 for n in d_mat.shape)
|
||
|
return max(d_mat[i, j], p_mat[i, j], q_mat[i, j])
|
||
|
|
||
|
|
||
|
class StrCmp95(_BaseSimilarity):
|
||
|
"""strcmp95 similarity
|
||
|
|
||
|
http://cpansearch.perl.org/src/SCW/Text-JaroWinkler-0.1/strcmp95.c
|
||
|
"""
|
||
|
sp_mx: tuple[tuple[str, str], ...] = (
|
||
|
('A', 'E'), ('A', 'I'), ('A', 'O'), ('A', 'U'), ('B', 'V'), ('E', 'I'),
|
||
|
('E', 'O'), ('E', 'U'), ('I', 'O'), ('I', 'U'), ('O', 'U'), ('I', 'Y'),
|
||
|
('E', 'Y'), ('C', 'G'), ('E', 'F'), ('W', 'U'), ('W', 'V'), ('X', 'K'),
|
||
|
('S', 'Z'), ('X', 'S'), ('Q', 'C'), ('U', 'V'), ('M', 'N'), ('L', 'I'),
|
||
|
('Q', 'O'), ('P', 'R'), ('I', 'J'), ('2', 'Z'), ('5', 'S'), ('8', 'B'),
|
||
|
('1', 'I'), ('1', 'L'), ('0', 'O'), ('0', 'Q'), ('C', 'K'), ('G', 'J'),
|
||
|
)
|
||
|
|
||
|
def __init__(self, long_strings: bool = False, external: bool = True) -> None:
|
||
|
self.long_strings = long_strings
|
||
|
self.external = external
|
||
|
|
||
|
def maximum(self, *sequences: Sequence[object]) -> int:
|
||
|
return 1
|
||
|
|
||
|
@staticmethod
|
||
|
def _in_range(char) -> bool:
|
||
|
return 0 < ord(char) < 91
|
||
|
|
||
|
def __call__(self, s1: str, s2: str) -> float:
|
||
|
s1 = s1.strip().upper()
|
||
|
s2 = s2.strip().upper()
|
||
|
|
||
|
result = self.quick_answer(s1, s2)
|
||
|
if result is not None:
|
||
|
return result
|
||
|
|
||
|
len_s1 = len(s1)
|
||
|
len_s2 = len(s2)
|
||
|
|
||
|
adjwt = defaultdict(int)
|
||
|
|
||
|
# Initialize the adjwt array on the first call to the function only.
|
||
|
# The adjwt array is used to give partial credit for characters that
|
||
|
# may be errors due to known phonetic or character recognition errors.
|
||
|
# A typical example is to match the letter "O" with the number "0"
|
||
|
for c1, c2 in self.sp_mx:
|
||
|
adjwt[c1, c2] = 3
|
||
|
adjwt[c2, c1] = 3
|
||
|
|
||
|
if len_s1 > len_s2:
|
||
|
search_range = len_s1
|
||
|
minv = len_s2
|
||
|
else:
|
||
|
search_range = len_s2
|
||
|
minv = len_s1
|
||
|
|
||
|
# Blank out the flags
|
||
|
s1_flag = [0] * search_range
|
||
|
s2_flag = [0] * search_range
|
||
|
search_range = max(0, search_range // 2 - 1)
|
||
|
|
||
|
# Looking only within the search range, count and flag the matched pairs.
|
||
|
num_com = 0
|
||
|
yl1 = len_s2 - 1
|
||
|
for i, sc1 in enumerate(s1):
|
||
|
lowlim = max(i - search_range, 0)
|
||
|
hilim = min(i + search_range, yl1)
|
||
|
for j in range(lowlim, hilim + 1):
|
||
|
if s2_flag[j] == 0 and s2[j] == sc1:
|
||
|
s2_flag[j] = 1
|
||
|
s1_flag[i] = 1
|
||
|
num_com += 1
|
||
|
break
|
||
|
|
||
|
# If no characters in common - return
|
||
|
if num_com == 0:
|
||
|
return 0.0
|
||
|
|
||
|
# Count the number of transpositions
|
||
|
k = n_trans = 0
|
||
|
for i, sc1 in enumerate(s1):
|
||
|
if not s1_flag[i]:
|
||
|
continue
|
||
|
for j in range(k, len_s2):
|
||
|
if s2_flag[j] != 0:
|
||
|
k = j + 1
|
||
|
break
|
||
|
if sc1 != s2[j]:
|
||
|
n_trans += 1
|
||
|
n_trans = n_trans // 2
|
||
|
|
||
|
# Adjust for similarities in unmatched characters
|
||
|
n_simi = 0
|
||
|
if minv > num_com:
|
||
|
for i in range(len_s1):
|
||
|
if s1_flag[i] != 0:
|
||
|
continue
|
||
|
if not self._in_range(s1[i]):
|
||
|
continue
|
||
|
for j in range(len_s2):
|
||
|
if s2_flag[j] != 0:
|
||
|
continue
|
||
|
if not self._in_range(s2[j]):
|
||
|
continue
|
||
|
if (s1[i], s2[j]) not in adjwt:
|
||
|
continue
|
||
|
n_simi += adjwt[s1[i], s2[j]]
|
||
|
s2_flag[j] = 2
|
||
|
break
|
||
|
num_sim = n_simi / 10.0 + num_com
|
||
|
|
||
|
# Main weight computation
|
||
|
weight = num_sim / len_s1 + num_sim / len_s2
|
||
|
weight += (num_com - n_trans) / num_com
|
||
|
weight = weight / 3.0
|
||
|
|
||
|
# Continue to boost the weight if the strings are similar
|
||
|
if weight <= 0.7:
|
||
|
return weight
|
||
|
|
||
|
# Adjust for having up to the first 4 characters in common
|
||
|
j = min(minv, 4)
|
||
|
i = 0
|
||
|
for sc1, sc2 in zip(s1, s2):
|
||
|
if i >= j:
|
||
|
break
|
||
|
if sc1 != sc2:
|
||
|
break
|
||
|
if sc1.isdigit():
|
||
|
break
|
||
|
i += 1
|
||
|
if i:
|
||
|
weight += i * 0.1 * (1.0 - weight)
|
||
|
|
||
|
# Optionally adjust for long strings.
|
||
|
|
||
|
# After agreeing beginning chars, at least two more must agree and
|
||
|
# the agreeing characters must be > .5 of remaining characters.
|
||
|
if not self.long_strings:
|
||
|
return weight
|
||
|
if minv <= 4:
|
||
|
return weight
|
||
|
if num_com <= i + 1 or 2 * num_com < minv + i:
|
||
|
return weight
|
||
|
if s1[0].isdigit():
|
||
|
return weight
|
||
|
res = (num_com - i - 1) / (len_s1 + len_s2 - i * 2 + 2)
|
||
|
weight += (1.0 - weight) * res
|
||
|
return weight
|
||
|
|
||
|
|
||
|
class MLIPNS(_BaseSimilarity):
|
||
|
"""
|
||
|
Compute the Hamming distance between the two or more sequences.
|
||
|
The Hamming distance is the number of differing items in ordered sequences.
|
||
|
|
||
|
http://www.sial.iias.spb.su/files/386-386-1-PB.pdf
|
||
|
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/mlipns.js
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self, threshold: float = 0.25,
|
||
|
maxmismatches: int = 2,
|
||
|
qval: int = 1,
|
||
|
external: bool = True,
|
||
|
) -> None:
|
||
|
self.qval = qval
|
||
|
self.threshold = threshold
|
||
|
self.maxmismatches = maxmismatches
|
||
|
self.external = external
|
||
|
|
||
|
def maximum(self, *sequences: Sequence[object]) -> int:
|
||
|
return 1
|
||
|
|
||
|
def __call__(self, *sequences: Sequence[object]) -> float:
|
||
|
sequences = self._get_sequences(*sequences)
|
||
|
|
||
|
result = self.quick_answer(*sequences)
|
||
|
if result is not None:
|
||
|
return result
|
||
|
|
||
|
mismatches = 0
|
||
|
ham = Hamming()(*sequences)
|
||
|
maxlen = max(map(len, sequences))
|
||
|
while all(sequences) and mismatches <= self.maxmismatches:
|
||
|
if not maxlen:
|
||
|
return 1
|
||
|
if 1 - (maxlen - ham) / maxlen <= self.threshold:
|
||
|
return 1
|
||
|
mismatches += 1
|
||
|
ham -= 1
|
||
|
maxlen -= 1
|
||
|
|
||
|
if not maxlen:
|
||
|
return 1
|
||
|
return 0
|
||
|
|
||
|
|
||
|
hamming = Hamming()
|
||
|
levenshtein = Levenshtein()
|
||
|
damerau = damerau_levenshtein = DamerauLevenshtein()
|
||
|
jaro = Jaro()
|
||
|
jaro_winkler = JaroWinkler()
|
||
|
needleman_wunsch = NeedlemanWunsch()
|
||
|
smith_waterman = SmithWaterman()
|
||
|
gotoh = Gotoh()
|
||
|
strcmp95 = StrCmp95()
|
||
|
mlipns = MLIPNS()
|