# sql/dml.py # Copyright (C) 2009-2023 the SQLAlchemy authors and contributors # # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php """ Provide :class:`_expression.Insert`, :class:`_expression.Update` and :class:`_expression.Delete`. """ from __future__ import annotations import collections.abc as collections_abc import operator from typing import Any from typing import cast from typing import Dict from typing import Iterable from typing import List from typing import MutableMapping from typing import NoReturn from typing import Optional from typing import overload from typing import Sequence from typing import Tuple from typing import Type from typing import TYPE_CHECKING from typing import TypeVar from typing import Union from . import coercions from . import roles from . import util as sql_util from ._typing import _no_kw from ._typing import _TP from ._typing import is_column_element from ._typing import is_named_from_clause from .base import _entity_namespace_key from .base import _exclusive_against from .base import _from_objects from .base import _generative from .base import _select_iterables from .base import ColumnCollection from .base import CompileState from .base import DialectKWArgs from .base import Executable from .base import Generative from .base import HasCompileState from .elements import BooleanClauseList from .elements import ClauseElement from .elements import ColumnClause from .elements import ColumnElement from .elements import Null from .selectable import Alias from .selectable import ExecutableReturnsRows from .selectable import FromClause from .selectable import HasCTE from .selectable import HasPrefixes from .selectable import Join from .selectable import SelectLabelStyle from .selectable import TableClause from .selectable import TypedReturnsRows from .sqltypes import NullType from .visitors import InternalTraversal from .. import exc from .. import util from ..util.typing import Self from ..util.typing import TypeGuard if TYPE_CHECKING: from ._typing import _ColumnExpressionArgument from ._typing import _ColumnsClauseArgument from ._typing import _DMLColumnArgument from ._typing import _DMLColumnKeyMapping from ._typing import _DMLTableArgument from ._typing import _T0 # noqa from ._typing import _T1 # noqa from ._typing import _T2 # noqa from ._typing import _T3 # noqa from ._typing import _T4 # noqa from ._typing import _T5 # noqa from ._typing import _T6 # noqa from ._typing import _T7 # noqa from ._typing import _TypedColumnClauseArgument as _TCCA # noqa from .base import ReadOnlyColumnCollection from .compiler import SQLCompiler from .elements import KeyedColumnElement from .selectable import _ColumnsClauseElement from .selectable import _SelectIterable from .selectable import Select from .selectable import Selectable def isupdate(dml: DMLState) -> TypeGuard[UpdateDMLState]: ... def isdelete(dml: DMLState) -> TypeGuard[DeleteDMLState]: ... def isinsert(dml: DMLState) -> TypeGuard[InsertDMLState]: ... else: isupdate = operator.attrgetter("isupdate") isdelete = operator.attrgetter("isdelete") isinsert = operator.attrgetter("isinsert") _T = TypeVar("_T", bound=Any) _DMLColumnElement = Union[str, ColumnClause[Any]] _DMLTableElement = Union[TableClause, Alias, Join] class DMLState(CompileState): _no_parameters = True _dict_parameters: Optional[MutableMapping[_DMLColumnElement, Any]] = None _multi_parameters: Optional[ List[MutableMapping[_DMLColumnElement, Any]] ] = None _ordered_values: Optional[List[Tuple[_DMLColumnElement, Any]]] = None _parameter_ordering: Optional[List[_DMLColumnElement]] = None _primary_table: FromClause _supports_implicit_returning = True isupdate = False isdelete = False isinsert = False statement: UpdateBase def __init__( self, statement: UpdateBase, compiler: SQLCompiler, **kw: Any ): raise NotImplementedError() @classmethod def get_entity_description(cls, statement: UpdateBase) -> Dict[str, Any]: return { "name": statement.table.name if is_named_from_clause(statement.table) else None, "table": statement.table, } @classmethod def get_returning_column_descriptions( cls, statement: UpdateBase ) -> List[Dict[str, Any]]: return [ { "name": c.key, "type": c.type, "expr": c, } for c in statement._all_selected_columns ] @property def dml_table(self) -> _DMLTableElement: return self.statement.table if TYPE_CHECKING: @classmethod def get_plugin_class(cls, statement: Executable) -> Type[DMLState]: ... @classmethod def _get_multi_crud_kv_pairs( cls, statement: UpdateBase, multi_kv_iterator: Iterable[Dict[_DMLColumnArgument, Any]], ) -> List[Dict[_DMLColumnElement, Any]]: return [ { coercions.expect(roles.DMLColumnRole, k): v for k, v in mapping.items() } for mapping in multi_kv_iterator ] @classmethod def _get_crud_kv_pairs( cls, statement: UpdateBase, kv_iterator: Iterable[Tuple[_DMLColumnArgument, Any]], needs_to_be_cacheable: bool, ) -> List[Tuple[_DMLColumnElement, Any]]: return [ ( coercions.expect(roles.DMLColumnRole, k), v if not needs_to_be_cacheable else coercions.expect( roles.ExpressionElementRole, v, type_=NullType(), is_crud=True, ), ) for k, v in kv_iterator ] def _make_extra_froms( self, statement: DMLWhereBase ) -> Tuple[FromClause, List[FromClause]]: froms: List[FromClause] = [] all_tables = list(sql_util.tables_from_leftmost(statement.table)) primary_table = all_tables[0] seen = {primary_table} for crit in statement._where_criteria: for item in _from_objects(crit): if not seen.intersection(item._cloned_set): froms.append(item) seen.update(item._cloned_set) froms.extend(all_tables[1:]) return primary_table, froms def _process_values(self, statement: ValuesBase) -> None: if self._no_parameters: self._dict_parameters = statement._values self._no_parameters = False def _process_select_values(self, statement: ValuesBase) -> None: assert statement._select_names is not None parameters: MutableMapping[_DMLColumnElement, Any] = { coercions.expect(roles.DMLColumnRole, name, as_key=True): Null() for name in statement._select_names } if self._no_parameters: self._no_parameters = False self._dict_parameters = parameters else: # this condition normally not reachable as the Insert # does not allow this construction to occur assert False, "This statement already has parameters" def _no_multi_values_supported(self, statement: ValuesBase) -> NoReturn: raise exc.InvalidRequestError( "%s construct does not support " "multiple parameter sets." % statement.__visit_name__.upper() ) def _cant_mix_formats_error(self) -> NoReturn: raise exc.InvalidRequestError( "Can't mix single and multiple VALUES " "formats in one INSERT statement; one style appends to a " "list while the other replaces values, so the intent is " "ambiguous." ) @CompileState.plugin_for("default", "insert") class InsertDMLState(DMLState): isinsert = True include_table_with_column_exprs = False _has_multi_parameters = False def __init__( self, statement: Insert, compiler: SQLCompiler, disable_implicit_returning: bool = False, **kw: Any, ): self.statement = statement self._primary_table = statement.table if disable_implicit_returning: self._supports_implicit_returning = False self.isinsert = True if statement._select_names: self._process_select_values(statement) if statement._values is not None: self._process_values(statement) if statement._multi_values: self._process_multi_values(statement) @util.memoized_property def _insert_col_keys(self) -> List[str]: # this is also done in crud.py -> _key_getters_for_crud_column return [ coercions.expect(roles.DMLColumnRole, col, as_key=True) for col in self._dict_parameters or () ] def _process_values(self, statement: ValuesBase) -> None: if self._no_parameters: self._has_multi_parameters = False self._dict_parameters = statement._values self._no_parameters = False elif self._has_multi_parameters: self._cant_mix_formats_error() def _process_multi_values(self, statement: ValuesBase) -> None: for parameters in statement._multi_values: multi_parameters: List[MutableMapping[_DMLColumnElement, Any]] = [ { c.key: value for c, value in zip(statement.table.c, parameter_set) } if isinstance(parameter_set, collections_abc.Sequence) else parameter_set for parameter_set in parameters ] if self._no_parameters: self._no_parameters = False self._has_multi_parameters = True self._multi_parameters = multi_parameters self._dict_parameters = self._multi_parameters[0] elif not self._has_multi_parameters: self._cant_mix_formats_error() else: assert self._multi_parameters self._multi_parameters.extend(multi_parameters) @CompileState.plugin_for("default", "update") class UpdateDMLState(DMLState): isupdate = True include_table_with_column_exprs = False def __init__(self, statement: Update, compiler: SQLCompiler, **kw: Any): self.statement = statement self.isupdate = True if statement._ordered_values is not None: self._process_ordered_values(statement) elif statement._values is not None: self._process_values(statement) elif statement._multi_values: self._no_multi_values_supported(statement) t, ef = self._make_extra_froms(statement) self._primary_table = t self._extra_froms = ef self.is_multitable = mt = ef self.include_table_with_column_exprs = bool( mt and compiler.render_table_with_column_in_update_from ) def _process_ordered_values(self, statement: ValuesBase) -> None: parameters = statement._ordered_values if self._no_parameters: self._no_parameters = False assert parameters is not None self._dict_parameters = dict(parameters) self._ordered_values = parameters self._parameter_ordering = [key for key, value in parameters] else: raise exc.InvalidRequestError( "Can only invoke ordered_values() once, and not mixed " "with any other values() call" ) @CompileState.plugin_for("default", "delete") class DeleteDMLState(DMLState): isdelete = True def __init__(self, statement: Delete, compiler: SQLCompiler, **kw: Any): self.statement = statement self.isdelete = True t, ef = self._make_extra_froms(statement) self._primary_table = t self._extra_froms = ef self.is_multitable = ef class UpdateBase( roles.DMLRole, HasCTE, HasCompileState, DialectKWArgs, HasPrefixes, Generative, ExecutableReturnsRows, ClauseElement, ): """Form the base for ``INSERT``, ``UPDATE``, and ``DELETE`` statements.""" __visit_name__ = "update_base" _hints: util.immutabledict[ Tuple[_DMLTableElement, str], str ] = util.EMPTY_DICT named_with_column = False _label_style: SelectLabelStyle = ( SelectLabelStyle.LABEL_STYLE_DISAMBIGUATE_ONLY ) table: _DMLTableElement _return_defaults = False _return_defaults_columns: Optional[ Tuple[_ColumnsClauseElement, ...] ] = None _supplemental_returning: Optional[Tuple[_ColumnsClauseElement, ...]] = None _returning: Tuple[_ColumnsClauseElement, ...] = () is_dml = True def _generate_fromclause_column_proxies( self, fromclause: FromClause ) -> None: fromclause._columns._populate_separate_keys( col._make_proxy(fromclause) for col in self._all_selected_columns if is_column_element(col) ) def params(self, *arg: Any, **kw: Any) -> NoReturn: """Set the parameters for the statement. This method raises ``NotImplementedError`` on the base class, and is overridden by :class:`.ValuesBase` to provide the SET/VALUES clause of UPDATE and INSERT. """ raise NotImplementedError( "params() is not supported for INSERT/UPDATE/DELETE statements." " To set the values for an INSERT or UPDATE statement, use" " stmt.values(**parameters)." ) @_generative def with_dialect_options(self, **opt: Any) -> Self: """Add dialect options to this INSERT/UPDATE/DELETE object. e.g.:: upd = table.update().dialect_options(mysql_limit=10) .. versionadded: 1.4 - this method supersedes the dialect options associated with the constructor. """ self._validate_dialect_kwargs(opt) return self @_generative def return_defaults( self, *cols: _DMLColumnArgument, supplemental_cols: Optional[Iterable[_DMLColumnArgument]] = None, ) -> Self: """Make use of a :term:`RETURNING` clause for the purpose of fetching server-side expressions and defaults, for supporting backends only. .. deepalchemy:: The :meth:`.UpdateBase.return_defaults` method is used by the ORM for its internal work in fetching newly generated primary key and server default values, in particular to provide the underyling implementation of the :paramref:`_orm.Mapper.eager_defaults` ORM feature as well as to allow RETURNING support with bulk ORM inserts. Its behavior is fairly idiosyncratic and is not really intended for general use. End users should stick with using :meth:`.UpdateBase.returning` in order to add RETURNING clauses to their INSERT, UPDATE and DELETE statements. Normally, a single row INSERT statement will automatically populate the :attr:`.CursorResult.inserted_primary_key` attribute when executed, which stores the primary key of the row that was just inserted in the form of a :class:`.Row` object with column names as named tuple keys (and the :attr:`.Row._mapping` view fully populated as well). The dialect in use chooses the strategy to use in order to populate this data; if it was generated using server-side defaults and / or SQL expressions, dialect-specific approaches such as ``cursor.lastrowid`` or ``RETURNING`` are typically used to acquire the new primary key value. However, when the statement is modified by calling :meth:`.UpdateBase.return_defaults` before executing the statement, additional behaviors take place **only** for backends that support RETURNING and for :class:`.Table` objects that maintain the :paramref:`.Table.implicit_returning` parameter at its default value of ``True``. In these cases, when the :class:`.CursorResult` is returned from the statement's execution, not only will :attr:`.CursorResult.inserted_primary_key` be populated as always, the :attr:`.CursorResult.returned_defaults` attribute will also be populated with a :class:`.Row` named-tuple representing the full range of server generated values from that single row, including values for any columns that specify :paramref:`_schema.Column.server_default` or which make use of :paramref:`_schema.Column.default` using a SQL expression. When invoking INSERT statements with multiple rows using :ref:`insertmanyvalues `, the :meth:`.UpdateBase.return_defaults` modifier will have the effect of the :attr:`_engine.CursorResult.inserted_primary_key_rows` and :attr:`_engine.CursorResult.returned_defaults_rows` attributes being fully populated with lists of :class:`.Row` objects representing newly inserted primary key values as well as newly inserted server generated values for each row inserted. The :attr:`.CursorResult.inserted_primary_key` and :attr:`.CursorResult.returned_defaults` attributes will also continue to be populated with the first row of these two collections. If the backend does not support RETURNING or the :class:`.Table` in use has disabled :paramref:`.Table.implicit_returning`, then no RETURNING clause is added and no additional data is fetched, however the INSERT, UPDATE or DELETE statement proceeds normally. E.g.:: stmt = table.insert().values(data='newdata').return_defaults() result = connection.execute(stmt) server_created_at = result.returned_defaults['created_at'] When used against an UPDATE statement :meth:`.UpdateBase.return_defaults` instead looks for columns that include :paramref:`_schema.Column.onupdate` or :paramref:`_schema.Column.server_onupdate` parameters assigned, when constructing the columns that will be included in the RETURNING clause by default if explicit columns were not specified. When used against a DELETE statement, no columns are included in RETURNING by default, they instead must be specified explicitly as there are no columns that normally change values when a DELETE statement proceeds. .. versionadded:: 2.0 :meth:`.UpdateBase.return_defaults` is supported for DELETE statements also and has been moved from :class:`.ValuesBase` to :class:`.UpdateBase`. The :meth:`.UpdateBase.return_defaults` method is mutually exclusive against the :meth:`.UpdateBase.returning` method and errors will be raised during the SQL compilation process if both are used at the same time on one statement. The RETURNING clause of the INSERT, UPDATE or DELETE statement is therefore controlled by only one of these methods at a time. The :meth:`.UpdateBase.return_defaults` method differs from :meth:`.UpdateBase.returning` in these ways: 1. :meth:`.UpdateBase.return_defaults` method causes the :attr:`.CursorResult.returned_defaults` collection to be populated with the first row from the RETURNING result. This attribute is not populated when using :meth:`.UpdateBase.returning`. 2. :meth:`.UpdateBase.return_defaults` is compatible with existing logic used to fetch auto-generated primary key values that are then populated into the :attr:`.CursorResult.inserted_primary_key` attribute. By contrast, using :meth:`.UpdateBase.returning` will have the effect of the :attr:`.CursorResult.inserted_primary_key` attribute being left unpopulated. 3. :meth:`.UpdateBase.return_defaults` can be called against any backend. Backends that don't support RETURNING will skip the usage of the feature, rather than raising an exception. The return value of :attr:`_engine.CursorResult.returned_defaults` will be ``None`` for backends that don't support RETURNING or for which the target :class:`.Table` sets :paramref:`.Table.implicit_returning` to ``False``. 4. An INSERT statement invoked with executemany() is supported if the backend database driver supports the :ref:`insertmanyvalues ` feature which is now supported by most SQLAlchemy-included backends. When executemany is used, the :attr:`_engine.CursorResult.returned_defaults_rows` and :attr:`_engine.CursorResult.inserted_primary_key_rows` accessors will return the inserted defaults and primary keys. .. versionadded:: 1.4 Added :attr:`_engine.CursorResult.returned_defaults_rows` and :attr:`_engine.CursorResult.inserted_primary_key_rows` accessors. In version 2.0, the underlying implementation which fetches and populates the data for these attributes was generalized to be supported by most backends, whereas in 1.4 they were only supported by the ``psycopg2`` driver. :param cols: optional list of column key names or :class:`_schema.Column` that acts as a filter for those columns that will be fetched. :param supplemental_cols: optional list of RETURNING expressions, in the same form as one would pass to the :meth:`.UpdateBase.returning` method. When present, the additional columns will be included in the RETURNING clause, and the :class:`.CursorResult` object will be "rewound" when returned, so that methods like :meth:`.CursorResult.all` will return new rows mostly as though the statement used :meth:`.UpdateBase.returning` directly. However, unlike when using :meth:`.UpdateBase.returning` directly, the **order of the columns is undefined**, so can only be targeted using names or :attr:`.Row._mapping` keys; they cannot reliably be targeted positionally. .. versionadded:: 2.0 .. seealso:: :meth:`.UpdateBase.returning` :attr:`_engine.CursorResult.returned_defaults` :attr:`_engine.CursorResult.returned_defaults_rows` :attr:`_engine.CursorResult.inserted_primary_key` :attr:`_engine.CursorResult.inserted_primary_key_rows` """ if self._return_defaults: # note _return_defaults_columns = () means return all columns, # so if we have been here before, only update collection if there # are columns in the collection if self._return_defaults_columns and cols: self._return_defaults_columns = tuple( util.OrderedSet(self._return_defaults_columns).union( coercions.expect(roles.ColumnsClauseRole, c) for c in cols ) ) else: # set for all columns self._return_defaults_columns = () else: self._return_defaults_columns = tuple( coercions.expect(roles.ColumnsClauseRole, c) for c in cols ) self._return_defaults = True if supplemental_cols: # uniquifying while also maintaining order (the maintain of order # is for test suites but also for vertical splicing supplemental_col_tup = ( coercions.expect(roles.ColumnsClauseRole, c) for c in supplemental_cols ) if self._supplemental_returning is None: self._supplemental_returning = tuple( util.unique_list(supplemental_col_tup) ) else: self._supplemental_returning = tuple( util.unique_list( self._supplemental_returning + tuple(supplemental_col_tup) ) ) return self @_generative def returning( self, *cols: _ColumnsClauseArgument[Any], **__kw: Any ) -> UpdateBase: r"""Add a :term:`RETURNING` or equivalent clause to this statement. e.g.: .. sourcecode:: pycon+sql >>> stmt = ( ... table.update() ... .where(table.c.data == "value") ... .values(status="X") ... .returning(table.c.server_flag, table.c.updated_timestamp) ... ) >>> print(stmt) {printsql}UPDATE some_table SET status=:status WHERE some_table.data = :data_1 RETURNING some_table.server_flag, some_table.updated_timestamp The method may be invoked multiple times to add new entries to the list of expressions to be returned. .. versionadded:: 1.4.0b2 The method may be invoked multiple times to add new entries to the list of expressions to be returned. The given collection of column expressions should be derived from the table that is the target of the INSERT, UPDATE, or DELETE. While :class:`_schema.Column` objects are typical, the elements can also be expressions: .. sourcecode:: pycon+sql >>> stmt = table.insert().returning( ... (table.c.first_name + " " + table.c.last_name).label("fullname") ... ) >>> print(stmt) {printsql}INSERT INTO some_table (first_name, last_name) VALUES (:first_name, :last_name) RETURNING some_table.first_name || :first_name_1 || some_table.last_name AS fullname Upon compilation, a RETURNING clause, or database equivalent, will be rendered within the statement. For INSERT and UPDATE, the values are the newly inserted/updated values. For DELETE, the values are those of the rows which were deleted. Upon execution, the values of the columns to be returned are made available via the result set and can be iterated using :meth:`_engine.CursorResult.fetchone` and similar. For DBAPIs which do not natively support returning values (i.e. cx_oracle), SQLAlchemy will approximate this behavior at the result level so that a reasonable amount of behavioral neutrality is provided. Note that not all databases/DBAPIs support RETURNING. For those backends with no support, an exception is raised upon compilation and/or execution. For those who do support it, the functionality across backends varies greatly, including restrictions on executemany() and other statements which return multiple rows. Please read the documentation notes for the database in use in order to determine the availability of RETURNING. .. seealso:: :meth:`.UpdateBase.return_defaults` - an alternative method tailored towards efficient fetching of server-side defaults and triggers for single-row INSERTs or UPDATEs. :ref:`tutorial_insert_returning` - in the :ref:`unified_tutorial` """ # noqa: E501 if __kw: raise _no_kw() if self._return_defaults: raise exc.InvalidRequestError( "return_defaults() is already configured on this statement" ) self._returning += tuple( coercions.expect(roles.ColumnsClauseRole, c) for c in cols ) return self def corresponding_column( self, column: KeyedColumnElement[Any], require_embedded: bool = False ) -> Optional[ColumnElement[Any]]: return self.exported_columns.corresponding_column( column, require_embedded=require_embedded ) @util.ro_memoized_property def _all_selected_columns(self) -> _SelectIterable: return [c for c in _select_iterables(self._returning)] @util.ro_memoized_property def exported_columns( self, ) -> ReadOnlyColumnCollection[Optional[str], ColumnElement[Any]]: """Return the RETURNING columns as a column collection for this statement. .. versionadded:: 1.4 """ return ColumnCollection( (c.key, c) for c in self._all_selected_columns if is_column_element(c) ).as_readonly() @_generative def with_hint( self, text: str, selectable: Optional[_DMLTableArgument] = None, dialect_name: str = "*", ) -> Self: """Add a table hint for a single table to this INSERT/UPDATE/DELETE statement. .. note:: :meth:`.UpdateBase.with_hint` currently applies only to Microsoft SQL Server. For MySQL INSERT/UPDATE/DELETE hints, use :meth:`.UpdateBase.prefix_with`. The text of the hint is rendered in the appropriate location for the database backend in use, relative to the :class:`_schema.Table` that is the subject of this statement, or optionally to that of the given :class:`_schema.Table` passed as the ``selectable`` argument. The ``dialect_name`` option will limit the rendering of a particular hint to a particular backend. Such as, to add a hint that only takes effect for SQL Server:: mytable.insert().with_hint("WITH (PAGLOCK)", dialect_name="mssql") :param text: Text of the hint. :param selectable: optional :class:`_schema.Table` that specifies an element of the FROM clause within an UPDATE or DELETE to be the subject of the hint - applies only to certain backends. :param dialect_name: defaults to ``*``, if specified as the name of a particular dialect, will apply these hints only when that dialect is in use. """ if selectable is None: selectable = self.table else: selectable = coercions.expect(roles.DMLTableRole, selectable) self._hints = self._hints.union({(selectable, dialect_name): text}) return self @property def entity_description(self) -> Dict[str, Any]: """Return a :term:`plugin-enabled` description of the table and/or entity which this DML construct is operating against. This attribute is generally useful when using the ORM, as an extended structure which includes information about mapped entities is returned. The section :ref:`queryguide_inspection` contains more background. For a Core statement, the structure returned by this accessor is derived from the :attr:`.UpdateBase.table` attribute, and refers to the :class:`.Table` being inserted, updated, or deleted:: >>> stmt = insert(user_table) >>> stmt.entity_description { "name": "user_table", "table": Table("user_table", ...) } .. versionadded:: 1.4.33 .. seealso:: :attr:`.UpdateBase.returning_column_descriptions` :attr:`.Select.column_descriptions` - entity information for a :func:`.select` construct :ref:`queryguide_inspection` - ORM background """ meth = DMLState.get_plugin_class(self).get_entity_description return meth(self) @property def returning_column_descriptions(self) -> List[Dict[str, Any]]: """Return a :term:`plugin-enabled` description of the columns which this DML construct is RETURNING against, in other words the expressions established as part of :meth:`.UpdateBase.returning`. This attribute is generally useful when using the ORM, as an extended structure which includes information about mapped entities is returned. The section :ref:`queryguide_inspection` contains more background. For a Core statement, the structure returned by this accessor is derived from the same objects that are returned by the :attr:`.UpdateBase.exported_columns` accessor:: >>> stmt = insert(user_table).returning(user_table.c.id, user_table.c.name) >>> stmt.entity_description [ { "name": "id", "type": Integer, "expr": Column("id", Integer(), table=, ...) }, { "name": "name", "type": String(), "expr": Column("name", String(), table=, ...) }, ] .. versionadded:: 1.4.33 .. seealso:: :attr:`.UpdateBase.entity_description` :attr:`.Select.column_descriptions` - entity information for a :func:`.select` construct :ref:`queryguide_inspection` - ORM background """ # noqa: E501 meth = DMLState.get_plugin_class( self ).get_returning_column_descriptions return meth(self) class ValuesBase(UpdateBase): """Supplies support for :meth:`.ValuesBase.values` to INSERT and UPDATE constructs.""" __visit_name__ = "values_base" _supports_multi_parameters = False select: Optional[Select[Any]] = None """SELECT statement for INSERT .. FROM SELECT""" _post_values_clause: Optional[ClauseElement] = None """used by extensions to Insert etc. to add additional syntacitcal constructs, e.g. ON CONFLICT etc.""" _values: Optional[util.immutabledict[_DMLColumnElement, Any]] = None _multi_values: Tuple[ Union[ Sequence[Dict[_DMLColumnElement, Any]], Sequence[Sequence[Any]], ], ..., ] = () _ordered_values: Optional[List[Tuple[_DMLColumnElement, Any]]] = None _select_names: Optional[List[str]] = None _inline: bool = False def __init__(self, table: _DMLTableArgument): self.table = coercions.expect( roles.DMLTableRole, table, apply_propagate_attrs=self ) @_generative @_exclusive_against( "_select_names", "_ordered_values", msgs={ "_select_names": "This construct already inserts from a SELECT", "_ordered_values": "This statement already has ordered " "values present", }, ) def values( self, *args: Union[ _DMLColumnKeyMapping[Any], Sequence[Any], ], **kwargs: Any, ) -> Self: r"""Specify a fixed VALUES clause for an INSERT statement, or the SET clause for an UPDATE. Note that the :class:`_expression.Insert` and :class:`_expression.Update` constructs support per-execution time formatting of the VALUES and/or SET clauses, based on the arguments passed to :meth:`_engine.Connection.execute`. However, the :meth:`.ValuesBase.values` method can be used to "fix" a particular set of parameters into the statement. Multiple calls to :meth:`.ValuesBase.values` will produce a new construct, each one with the parameter list modified to include the new parameters sent. In the typical case of a single dictionary of parameters, the newly passed keys will replace the same keys in the previous construct. In the case of a list-based "multiple values" construct, each new list of values is extended onto the existing list of values. :param \**kwargs: key value pairs representing the string key of a :class:`_schema.Column` mapped to the value to be rendered into the VALUES or SET clause:: users.insert().values(name="some name") users.update().where(users.c.id==5).values(name="some name") :param \*args: As an alternative to passing key/value parameters, a dictionary, tuple, or list of dictionaries or tuples can be passed as a single positional argument in order to form the VALUES or SET clause of the statement. The forms that are accepted vary based on whether this is an :class:`_expression.Insert` or an :class:`_expression.Update` construct. For either an :class:`_expression.Insert` or :class:`_expression.Update` construct, a single dictionary can be passed, which works the same as that of the kwargs form:: users.insert().values({"name": "some name"}) users.update().values({"name": "some new name"}) Also for either form but more typically for the :class:`_expression.Insert` construct, a tuple that contains an entry for every column in the table is also accepted:: users.insert().values((5, "some name")) The :class:`_expression.Insert` construct also supports being passed a list of dictionaries or full-table-tuples, which on the server will render the less common SQL syntax of "multiple values" - this syntax is supported on backends such as SQLite, PostgreSQL, MySQL, but not necessarily others:: users.insert().values([ {"name": "some name"}, {"name": "some other name"}, {"name": "yet another name"}, ]) The above form would render a multiple VALUES statement similar to:: INSERT INTO users (name) VALUES (:name_1), (:name_2), (:name_3) It is essential to note that **passing multiple values is NOT the same as using traditional executemany() form**. The above syntax is a **special** syntax not typically used. To emit an INSERT statement against multiple rows, the normal method is to pass a multiple values list to the :meth:`_engine.Connection.execute` method, which is supported by all database backends and is generally more efficient for a very large number of parameters. .. seealso:: :ref:`tutorial_multiple_parameters` - an introduction to the traditional Core method of multiple parameter set invocation for INSERTs and other statements. .. versionchanged:: 1.0.0 an INSERT that uses a multiple-VALUES clause, even a list of length one, implies that the :paramref:`_expression.Insert.inline` flag is set to True, indicating that the statement will not attempt to fetch the "last inserted primary key" or other defaults. The statement deals with an arbitrary number of rows, so the :attr:`_engine.CursorResult.inserted_primary_key` accessor does not apply. .. versionchanged:: 1.0.0 A multiple-VALUES INSERT now supports columns with Python side default values and callables in the same way as that of an "executemany" style of invocation; the callable is invoked for each row. See :ref:`bug_3288` for other details. The UPDATE construct also supports rendering the SET parameters in a specific order. For this feature refer to the :meth:`_expression.Update.ordered_values` method. .. seealso:: :meth:`_expression.Update.ordered_values` """ if args: # positional case. this is currently expensive. we don't # yet have positional-only args so we have to check the length. # then we need to check multiparams vs. single dictionary. # since the parameter format is needed in order to determine # a cache key, we need to determine this up front. arg = args[0] if kwargs: raise exc.ArgumentError( "Can't pass positional and kwargs to values() " "simultaneously" ) elif len(args) > 1: raise exc.ArgumentError( "Only a single dictionary/tuple or list of " "dictionaries/tuples is accepted positionally." ) elif isinstance(arg, collections_abc.Sequence): if arg and isinstance(arg[0], dict): multi_kv_generator = DMLState.get_plugin_class( self )._get_multi_crud_kv_pairs self._multi_values += (multi_kv_generator(self, arg),) return self if arg and isinstance(arg[0], (list, tuple)): self._multi_values += (arg,) return self if TYPE_CHECKING: # crud.py raises during compilation if this is not the # case assert isinstance(self, Insert) # tuple values arg = {c.key: value for c, value in zip(self.table.c, arg)} else: # kwarg path. this is the most common path for non-multi-params # so this is fairly quick. arg = cast("Dict[_DMLColumnArgument, Any]", kwargs) if args: raise exc.ArgumentError( "Only a single dictionary/tuple or list of " "dictionaries/tuples is accepted positionally." ) # for top level values(), convert literals to anonymous bound # parameters at statement construction time, so that these values can # participate in the cache key process like any other ClauseElement. # crud.py now intercepts bound parameters with unique=True from here # and ensures they get the "crud"-style name when rendered. kv_generator = DMLState.get_plugin_class(self)._get_crud_kv_pairs coerced_arg = dict(kv_generator(self, arg.items(), True)) if self._values: self._values = self._values.union(coerced_arg) else: self._values = util.immutabledict(coerced_arg) return self class Insert(ValuesBase): """Represent an INSERT construct. The :class:`_expression.Insert` object is created using the :func:`_expression.insert()` function. """ __visit_name__ = "insert" _supports_multi_parameters = True select = None include_insert_from_select_defaults = False is_insert = True table: TableClause _traverse_internals = ( [ ("table", InternalTraversal.dp_clauseelement), ("_inline", InternalTraversal.dp_boolean), ("_select_names", InternalTraversal.dp_string_list), ("_values", InternalTraversal.dp_dml_values), ("_multi_values", InternalTraversal.dp_dml_multi_values), ("select", InternalTraversal.dp_clauseelement), ("_post_values_clause", InternalTraversal.dp_clauseelement), ("_returning", InternalTraversal.dp_clauseelement_tuple), ("_hints", InternalTraversal.dp_table_hint_list), ("_return_defaults", InternalTraversal.dp_boolean), ( "_return_defaults_columns", InternalTraversal.dp_clauseelement_tuple, ), ] + HasPrefixes._has_prefixes_traverse_internals + DialectKWArgs._dialect_kwargs_traverse_internals + Executable._executable_traverse_internals + HasCTE._has_ctes_traverse_internals ) def __init__(self, table: _DMLTableArgument): super().__init__(table) @_generative def inline(self) -> Self: """Make this :class:`_expression.Insert` construct "inline" . When set, no attempt will be made to retrieve the SQL-generated default values to be provided within the statement; in particular, this allows SQL expressions to be rendered 'inline' within the statement without the need to pre-execute them beforehand; for backends that support "returning", this turns off the "implicit returning" feature for the statement. .. versionchanged:: 1.4 the :paramref:`_expression.Insert.inline` parameter is now superseded by the :meth:`_expression.Insert.inline` method. """ self._inline = True return self @_generative def from_select( self, names: List[str], select: Selectable, include_defaults: bool = True, ) -> Self: """Return a new :class:`_expression.Insert` construct which represents an ``INSERT...FROM SELECT`` statement. e.g.:: sel = select(table1.c.a, table1.c.b).where(table1.c.c > 5) ins = table2.insert().from_select(['a', 'b'], sel) :param names: a sequence of string column names or :class:`_schema.Column` objects representing the target columns. :param select: a :func:`_expression.select` construct, :class:`_expression.FromClause` or other construct which resolves into a :class:`_expression.FromClause`, such as an ORM :class:`_query.Query` object, etc. The order of columns returned from this FROM clause should correspond to the order of columns sent as the ``names`` parameter; while this is not checked before passing along to the database, the database would normally raise an exception if these column lists don't correspond. :param include_defaults: if True, non-server default values and SQL expressions as specified on :class:`_schema.Column` objects (as documented in :ref:`metadata_defaults_toplevel`) not otherwise specified in the list of names will be rendered into the INSERT and SELECT statements, so that these values are also included in the data to be inserted. .. note:: A Python-side default that uses a Python callable function will only be invoked **once** for the whole statement, and **not per row**. .. versionadded:: 1.0.0 - :meth:`_expression.Insert.from_select` now renders Python-side and SQL expression column defaults into the SELECT statement for columns otherwise not included in the list of column names. .. versionchanged:: 1.0.0 an INSERT that uses FROM SELECT implies that the :paramref:`_expression.insert.inline` flag is set to True, indicating that the statement will not attempt to fetch the "last inserted primary key" or other defaults. The statement deals with an arbitrary number of rows, so the :attr:`_engine.CursorResult.inserted_primary_key` accessor does not apply. """ if self._values: raise exc.InvalidRequestError( "This construct already inserts value expressions" ) self._select_names = names self._inline = True self.include_insert_from_select_defaults = include_defaults self.select = coercions.expect(roles.DMLSelectRole, select) return self if TYPE_CHECKING: # START OVERLOADED FUNCTIONS self.returning ReturningInsert 1-8 # code within this block is **programmatically, # statically generated** by tools/generate_tuple_map_overloads.py @overload def returning(self, __ent0: _TCCA[_T0]) -> ReturningInsert[Tuple[_T0]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1] ) -> ReturningInsert[Tuple[_T0, _T1]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2] ) -> ReturningInsert[Tuple[_T0, _T1, _T2]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], ) -> ReturningInsert[Tuple[_T0, _T1, _T2, _T3]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], ) -> ReturningInsert[Tuple[_T0, _T1, _T2, _T3, _T4]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], ) -> ReturningInsert[Tuple[_T0, _T1, _T2, _T3, _T4, _T5]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], __ent6: _TCCA[_T6], ) -> ReturningInsert[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], __ent6: _TCCA[_T6], __ent7: _TCCA[_T7], ) -> ReturningInsert[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7]]: ... # END OVERLOADED FUNCTIONS self.returning @overload def returning( self, *cols: _ColumnsClauseArgument[Any], **__kw: Any ) -> ReturningInsert[Any]: ... def returning( self, *cols: _ColumnsClauseArgument[Any], **__kw: Any ) -> ReturningInsert[Any]: ... class ReturningInsert(Insert, TypedReturnsRows[_TP]): """Typing-only class that establishes a generic type form of :class:`.Insert` which tracks returned column types. This datatype is delivered when calling the :meth:`.Insert.returning` method. .. versionadded:: 2.0 """ class DMLWhereBase: table: _DMLTableElement _where_criteria: Tuple[ColumnElement[Any], ...] = () @_generative def where(self, *whereclause: _ColumnExpressionArgument[bool]) -> Self: """Return a new construct with the given expression(s) added to its WHERE clause, joined to the existing clause via AND, if any. Both :meth:`_dml.Update.where` and :meth:`_dml.Delete.where` support multiple-table forms, including database-specific ``UPDATE...FROM`` as well as ``DELETE..USING``. For backends that don't have multiple-table support, a backend agnostic approach to using multiple tables is to make use of correlated subqueries. See the linked tutorial sections below for examples. .. seealso:: :ref:`tutorial_correlated_updates` :ref:`tutorial_update_from` :ref:`tutorial_multi_table_deletes` """ for criterion in whereclause: where_criteria: ColumnElement[Any] = coercions.expect( roles.WhereHavingRole, criterion ) self._where_criteria += (where_criteria,) return self def filter(self, *criteria: roles.ExpressionElementRole[Any]) -> Self: """A synonym for the :meth:`_dml.DMLWhereBase.where` method. .. versionadded:: 1.4 """ return self.where(*criteria) def _filter_by_zero(self) -> _DMLTableElement: return self.table def filter_by(self, **kwargs: Any) -> Self: r"""apply the given filtering criterion as a WHERE clause to this select. """ from_entity = self._filter_by_zero() clauses = [ _entity_namespace_key(from_entity, key) == value for key, value in kwargs.items() ] return self.filter(*clauses) @property def whereclause(self) -> Optional[ColumnElement[Any]]: """Return the completed WHERE clause for this :class:`.DMLWhereBase` statement. This assembles the current collection of WHERE criteria into a single :class:`_expression.BooleanClauseList` construct. .. versionadded:: 1.4 """ return BooleanClauseList._construct_for_whereclause( self._where_criteria ) class Update(DMLWhereBase, ValuesBase): """Represent an Update construct. The :class:`_expression.Update` object is created using the :func:`_expression.update()` function. """ __visit_name__ = "update" is_update = True _traverse_internals = ( [ ("table", InternalTraversal.dp_clauseelement), ("_where_criteria", InternalTraversal.dp_clauseelement_tuple), ("_inline", InternalTraversal.dp_boolean), ("_ordered_values", InternalTraversal.dp_dml_ordered_values), ("_values", InternalTraversal.dp_dml_values), ("_returning", InternalTraversal.dp_clauseelement_tuple), ("_hints", InternalTraversal.dp_table_hint_list), ("_return_defaults", InternalTraversal.dp_boolean), ( "_return_defaults_columns", InternalTraversal.dp_clauseelement_tuple, ), ] + HasPrefixes._has_prefixes_traverse_internals + DialectKWArgs._dialect_kwargs_traverse_internals + Executable._executable_traverse_internals + HasCTE._has_ctes_traverse_internals ) def __init__(self, table: _DMLTableArgument): super().__init__(table) @_generative def ordered_values(self, *args: Tuple[_DMLColumnArgument, Any]) -> Self: """Specify the VALUES clause of this UPDATE statement with an explicit parameter ordering that will be maintained in the SET clause of the resulting UPDATE statement. E.g.:: stmt = table.update().ordered_values( ("name", "ed"), ("ident": "foo") ) .. seealso:: :ref:`tutorial_parameter_ordered_updates` - full example of the :meth:`_expression.Update.ordered_values` method. .. versionchanged:: 1.4 The :meth:`_expression.Update.ordered_values` method supersedes the :paramref:`_expression.update.preserve_parameter_order` parameter, which will be removed in SQLAlchemy 2.0. """ if self._values: raise exc.ArgumentError( "This statement already has values present" ) elif self._ordered_values: raise exc.ArgumentError( "This statement already has ordered values present" ) kv_generator = DMLState.get_plugin_class(self)._get_crud_kv_pairs self._ordered_values = kv_generator(self, args, True) return self @_generative def inline(self) -> Self: """Make this :class:`_expression.Update` construct "inline" . When set, SQL defaults present on :class:`_schema.Column` objects via the ``default`` keyword will be compiled 'inline' into the statement and not pre-executed. This means that their values will not be available in the dictionary returned from :meth:`_engine.CursorResult.last_updated_params`. .. versionchanged:: 1.4 the :paramref:`_expression.update.inline` parameter is now superseded by the :meth:`_expression.Update.inline` method. """ self._inline = True return self if TYPE_CHECKING: # START OVERLOADED FUNCTIONS self.returning ReturningUpdate 1-8 # code within this block is **programmatically, # statically generated** by tools/generate_tuple_map_overloads.py @overload def returning(self, __ent0: _TCCA[_T0]) -> ReturningUpdate[Tuple[_T0]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1] ) -> ReturningUpdate[Tuple[_T0, _T1]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2] ) -> ReturningUpdate[Tuple[_T0, _T1, _T2]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], ) -> ReturningUpdate[Tuple[_T0, _T1, _T2, _T3]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], ) -> ReturningUpdate[Tuple[_T0, _T1, _T2, _T3, _T4]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], ) -> ReturningUpdate[Tuple[_T0, _T1, _T2, _T3, _T4, _T5]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], __ent6: _TCCA[_T6], ) -> ReturningUpdate[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], __ent6: _TCCA[_T6], __ent7: _TCCA[_T7], ) -> ReturningUpdate[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7]]: ... # END OVERLOADED FUNCTIONS self.returning @overload def returning( self, *cols: _ColumnsClauseArgument[Any], **__kw: Any ) -> ReturningUpdate[Any]: ... def returning( self, *cols: _ColumnsClauseArgument[Any], **__kw: Any ) -> ReturningUpdate[Any]: ... class ReturningUpdate(Update, TypedReturnsRows[_TP]): """Typing-only class that establishes a generic type form of :class:`.Update` which tracks returned column types. This datatype is delivered when calling the :meth:`.Update.returning` method. .. versionadded:: 2.0 """ class Delete(DMLWhereBase, UpdateBase): """Represent a DELETE construct. The :class:`_expression.Delete` object is created using the :func:`_expression.delete()` function. """ __visit_name__ = "delete" is_delete = True _traverse_internals = ( [ ("table", InternalTraversal.dp_clauseelement), ("_where_criteria", InternalTraversal.dp_clauseelement_tuple), ("_returning", InternalTraversal.dp_clauseelement_tuple), ("_hints", InternalTraversal.dp_table_hint_list), ] + HasPrefixes._has_prefixes_traverse_internals + DialectKWArgs._dialect_kwargs_traverse_internals + Executable._executable_traverse_internals + HasCTE._has_ctes_traverse_internals ) def __init__(self, table: _DMLTableArgument): self.table = coercions.expect( roles.DMLTableRole, table, apply_propagate_attrs=self ) if TYPE_CHECKING: # START OVERLOADED FUNCTIONS self.returning ReturningDelete 1-8 # code within this block is **programmatically, # statically generated** by tools/generate_tuple_map_overloads.py @overload def returning(self, __ent0: _TCCA[_T0]) -> ReturningDelete[Tuple[_T0]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1] ) -> ReturningDelete[Tuple[_T0, _T1]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2] ) -> ReturningDelete[Tuple[_T0, _T1, _T2]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], ) -> ReturningDelete[Tuple[_T0, _T1, _T2, _T3]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], ) -> ReturningDelete[Tuple[_T0, _T1, _T2, _T3, _T4]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], ) -> ReturningDelete[Tuple[_T0, _T1, _T2, _T3, _T4, _T5]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], __ent6: _TCCA[_T6], ) -> ReturningDelete[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6]]: ... @overload def returning( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], __ent6: _TCCA[_T6], __ent7: _TCCA[_T7], ) -> ReturningDelete[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7]]: ... # END OVERLOADED FUNCTIONS self.returning @overload def returning( self, *cols: _ColumnsClauseArgument[Any], **__kw: Any ) -> ReturningDelete[Any]: ... def returning( self, *cols: _ColumnsClauseArgument[Any], **__kw: Any ) -> ReturningDelete[Any]: ... class ReturningDelete(Update, TypedReturnsRows[_TP]): """Typing-only class that establishes a generic type form of :class:`.Delete` which tracks returned column types. This datatype is delivered when calling the :meth:`.Delete.returning` method. .. versionadded:: 2.0 """