You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
bazarr/libs/dns/dnssec.py

595 lines
18 KiB

# Copyright (C) Dnspython Contributors, see LICENSE for text of ISC license
# Copyright (C) 2003-2017 Nominum, Inc.
#
# Permission to use, copy, modify, and distribute this software and its
# documentation for any purpose with or without fee is hereby granted,
# provided that the above copyright notice and this permission notice
# appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
# OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
"""Common DNSSEC-related functions and constants."""
import hashlib
import struct
import time
import base64
import dns.enum
import dns.exception
import dns.name
import dns.node
import dns.rdataset
import dns.rdata
import dns.rdatatype
import dns.rdataclass
class UnsupportedAlgorithm(dns.exception.DNSException):
"""The DNSSEC algorithm is not supported."""
class ValidationFailure(dns.exception.DNSException):
"""The DNSSEC signature is invalid."""
class Algorithm(dns.enum.IntEnum):
RSAMD5 = 1
DH = 2
DSA = 3
ECC = 4
RSASHA1 = 5
DSANSEC3SHA1 = 6
RSASHA1NSEC3SHA1 = 7
RSASHA256 = 8
RSASHA512 = 10
ECCGOST = 12
ECDSAP256SHA256 = 13
ECDSAP384SHA384 = 14
ED25519 = 15
ED448 = 16
INDIRECT = 252
PRIVATEDNS = 253
PRIVATEOID = 254
@classmethod
def _maximum(cls):
return 255
def algorithm_from_text(text):
"""Convert text into a DNSSEC algorithm value.
*text*, a ``str``, the text to convert to into an algorithm value.
Returns an ``int``.
"""
return Algorithm.from_text(text)
def algorithm_to_text(value):
"""Convert a DNSSEC algorithm value to text
*value*, an ``int`` a DNSSEC algorithm.
Returns a ``str``, the name of a DNSSEC algorithm.
"""
return Algorithm.to_text(value)
def key_id(key):
"""Return the key id (a 16-bit number) for the specified key.
*key*, a ``dns.rdtypes.ANY.DNSKEY.DNSKEY``
Returns an ``int`` between 0 and 65535
"""
rdata = key.to_wire()
if key.algorithm == Algorithm.RSAMD5:
return (rdata[-3] << 8) + rdata[-2]
else:
total = 0
for i in range(len(rdata) // 2):
total += (rdata[2 * i] << 8) + \
rdata[2 * i + 1]
if len(rdata) % 2 != 0:
total += rdata[len(rdata) - 1] << 8
total += ((total >> 16) & 0xffff)
return total & 0xffff
class DSDigest(dns.enum.IntEnum):
"""DNSSEC Delegation Signer Digest Algorithm"""
SHA1 = 1
SHA256 = 2
SHA384 = 4
@classmethod
def _maximum(cls):
return 255
def make_ds(name, key, algorithm, origin=None):
"""Create a DS record for a DNSSEC key.
*name*, a ``dns.name.Name`` or ``str``, the owner name of the DS record.
*key*, a ``dns.rdtypes.ANY.DNSKEY.DNSKEY``, the key the DS is about.
*algorithm*, a ``str`` or ``int`` specifying the hash algorithm.
The currently supported hashes are "SHA1", "SHA256", and "SHA384". Case
does not matter for these strings.
*origin*, a ``dns.name.Name`` or ``None``. If `key` is a relative name,
then it will be made absolute using the specified origin.
Raises ``UnsupportedAlgorithm`` if the algorithm is unknown.
Returns a ``dns.rdtypes.ANY.DS.DS``
"""
try:
if isinstance(algorithm, str):
algorithm = DSDigest[algorithm.upper()]
except Exception:
raise UnsupportedAlgorithm('unsupported algorithm "%s"' % algorithm)
if algorithm == DSDigest.SHA1:
dshash = hashlib.sha1()
elif algorithm == DSDigest.SHA256:
dshash = hashlib.sha256()
elif algorithm == DSDigest.SHA384:
dshash = hashlib.sha384()
else:
raise UnsupportedAlgorithm('unsupported algorithm "%s"' % algorithm)
if isinstance(name, str):
name = dns.name.from_text(name, origin)
dshash.update(name.canonicalize().to_wire())
dshash.update(key.to_wire(origin=origin))
digest = dshash.digest()
dsrdata = struct.pack("!HBB", key_id(key), key.algorithm, algorithm) + \
digest
return dns.rdata.from_wire(dns.rdataclass.IN, dns.rdatatype.DS, dsrdata, 0,
len(dsrdata))
def _find_candidate_keys(keys, rrsig):
value = keys.get(rrsig.signer)
if isinstance(value, dns.node.Node):
rdataset = value.get_rdataset(dns.rdataclass.IN, dns.rdatatype.DNSKEY)
else:
rdataset = value
if rdataset is None:
return None
return [rd for rd in rdataset if
rd.algorithm == rrsig.algorithm and key_id(rd) == rrsig.key_tag]
def _is_rsa(algorithm):
return algorithm in (Algorithm.RSAMD5, Algorithm.RSASHA1,
Algorithm.RSASHA1NSEC3SHA1, Algorithm.RSASHA256,
Algorithm.RSASHA512)
def _is_dsa(algorithm):
return algorithm in (Algorithm.DSA, Algorithm.DSANSEC3SHA1)
def _is_ecdsa(algorithm):
return algorithm in (Algorithm.ECDSAP256SHA256, Algorithm.ECDSAP384SHA384)
def _is_eddsa(algorithm):
return algorithm in (Algorithm.ED25519, Algorithm.ED448)
def _is_gost(algorithm):
return algorithm == Algorithm.ECCGOST
def _is_md5(algorithm):
return algorithm == Algorithm.RSAMD5
def _is_sha1(algorithm):
return algorithm in (Algorithm.DSA, Algorithm.RSASHA1,
Algorithm.DSANSEC3SHA1, Algorithm.RSASHA1NSEC3SHA1)
def _is_sha256(algorithm):
return algorithm in (Algorithm.RSASHA256, Algorithm.ECDSAP256SHA256)
def _is_sha384(algorithm):
return algorithm == Algorithm.ECDSAP384SHA384
def _is_sha512(algorithm):
return algorithm == Algorithm.RSASHA512
def _make_hash(algorithm):
if _is_md5(algorithm):
return hashes.MD5()
if _is_sha1(algorithm):
return hashes.SHA1()
if _is_sha256(algorithm):
return hashes.SHA256()
if _is_sha384(algorithm):
return hashes.SHA384()
if _is_sha512(algorithm):
return hashes.SHA512()
if algorithm == Algorithm.ED25519:
return hashes.SHA512()
if algorithm == Algorithm.ED448:
return hashes.SHAKE256(114)
raise ValidationFailure('unknown hash for algorithm %u' % algorithm)
def _bytes_to_long(b):
return int.from_bytes(b, 'big')
def _validate_signature(sig, data, key, chosen_hash):
if _is_rsa(key.algorithm):
keyptr = key.key
(bytes_,) = struct.unpack('!B', keyptr[0:1])
keyptr = keyptr[1:]
if bytes_ == 0:
(bytes_,) = struct.unpack('!H', keyptr[0:2])
keyptr = keyptr[2:]
rsa_e = keyptr[0:bytes_]
rsa_n = keyptr[bytes_:]
try:
public_key = rsa.RSAPublicNumbers(
_bytes_to_long(rsa_e),
_bytes_to_long(rsa_n)).public_key(default_backend())
except ValueError:
raise ValidationFailure('invalid public key')
public_key.verify(sig, data, padding.PKCS1v15(), chosen_hash)
elif _is_dsa(key.algorithm):
keyptr = key.key
(t,) = struct.unpack('!B', keyptr[0:1])
keyptr = keyptr[1:]
octets = 64 + t * 8
dsa_q = keyptr[0:20]
keyptr = keyptr[20:]
dsa_p = keyptr[0:octets]
keyptr = keyptr[octets:]
dsa_g = keyptr[0:octets]
keyptr = keyptr[octets:]
dsa_y = keyptr[0:octets]
try:
public_key = dsa.DSAPublicNumbers(
_bytes_to_long(dsa_y),
dsa.DSAParameterNumbers(
_bytes_to_long(dsa_p),
_bytes_to_long(dsa_q),
_bytes_to_long(dsa_g))).public_key(default_backend())
except ValueError:
raise ValidationFailure('invalid public key')
public_key.verify(sig, data, chosen_hash)
elif _is_ecdsa(key.algorithm):
keyptr = key.key
if key.algorithm == Algorithm.ECDSAP256SHA256:
curve = ec.SECP256R1()
octets = 32
else:
curve = ec.SECP384R1()
octets = 48
ecdsa_x = keyptr[0:octets]
ecdsa_y = keyptr[octets:octets * 2]
try:
public_key = ec.EllipticCurvePublicNumbers(
curve=curve,
x=_bytes_to_long(ecdsa_x),
y=_bytes_to_long(ecdsa_y)).public_key(default_backend())
except ValueError:
raise ValidationFailure('invalid public key')
public_key.verify(sig, data, ec.ECDSA(chosen_hash))
elif _is_eddsa(key.algorithm):
keyptr = key.key
if key.algorithm == Algorithm.ED25519:
loader = ed25519.Ed25519PublicKey
else:
loader = ed448.Ed448PublicKey
try:
public_key = loader.from_public_bytes(keyptr)
except ValueError:
raise ValidationFailure('invalid public key')
public_key.verify(sig, data)
elif _is_gost(key.algorithm):
raise UnsupportedAlgorithm(
'algorithm "%s" not supported by dnspython' %
algorithm_to_text(key.algorithm))
else:
raise ValidationFailure('unknown algorithm %u' % key.algorithm)
def _validate_rrsig(rrset, rrsig, keys, origin=None, now=None):
"""Validate an RRset against a single signature rdata, throwing an
exception if validation is not successful.
*rrset*, the RRset to validate. This can be a
``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``)
tuple.
*rrsig*, a ``dns.rdata.Rdata``, the signature to validate.
*keys*, the key dictionary, used to find the DNSKEY associated
with a given name. The dictionary is keyed by a
``dns.name.Name``, and has ``dns.node.Node`` or
``dns.rdataset.Rdataset`` values.
*origin*, a ``dns.name.Name`` or ``None``, the origin to use for relative
names.
*now*, an ``int`` or ``None``, the time, in seconds since the epoch, to
use as the current time when validating. If ``None``, the actual current
time is used.
Raises ``ValidationFailure`` if the signature is expired, not yet valid,
the public key is invalid, the algorithm is unknown, the verification
fails, etc.
Raises ``UnsupportedAlgorithm`` if the algorithm is recognized by
dnspython but not implemented.
"""
if isinstance(origin, str):
origin = dns.name.from_text(origin, dns.name.root)
candidate_keys = _find_candidate_keys(keys, rrsig)
if candidate_keys is None:
raise ValidationFailure('unknown key')
# For convenience, allow the rrset to be specified as a (name,
# rdataset) tuple as well as a proper rrset
if isinstance(rrset, tuple):
rrname = rrset[0]
rdataset = rrset[1]
else:
rrname = rrset.name
rdataset = rrset
if now is None:
now = time.time()
if rrsig.expiration < now:
raise ValidationFailure('expired')
if rrsig.inception > now:
raise ValidationFailure('not yet valid')
if _is_dsa(rrsig.algorithm):
sig_r = rrsig.signature[1:21]
sig_s = rrsig.signature[21:]
sig = utils.encode_dss_signature(_bytes_to_long(sig_r),
_bytes_to_long(sig_s))
elif _is_ecdsa(rrsig.algorithm):
if rrsig.algorithm == Algorithm.ECDSAP256SHA256:
octets = 32
else:
octets = 48
sig_r = rrsig.signature[0:octets]
sig_s = rrsig.signature[octets:]
sig = utils.encode_dss_signature(_bytes_to_long(sig_r),
_bytes_to_long(sig_s))
else:
sig = rrsig.signature
data = b''
data += rrsig.to_wire(origin=origin)[:18]
data += rrsig.signer.to_digestable(origin)
# Derelativize the name before considering labels.
rrname = rrname.derelativize(origin)
if len(rrname) - 1 < rrsig.labels:
raise ValidationFailure('owner name longer than RRSIG labels')
elif rrsig.labels < len(rrname) - 1:
suffix = rrname.split(rrsig.labels + 1)[1]
rrname = dns.name.from_text('*', suffix)
rrnamebuf = rrname.to_digestable()
rrfixed = struct.pack('!HHI', rdataset.rdtype, rdataset.rdclass,
rrsig.original_ttl)
rdatas = [rdata.to_digestable(origin) for rdata in rdataset]
for rdata in sorted(rdatas):
data += rrnamebuf
data += rrfixed
rrlen = struct.pack('!H', len(rdata))
data += rrlen
data += rdata
chosen_hash = _make_hash(rrsig.algorithm)
for candidate_key in candidate_keys:
try:
_validate_signature(sig, data, candidate_key, chosen_hash)
return
except (InvalidSignature, ValidationFailure):
# this happens on an individual validation failure
continue
# nothing verified -- raise failure:
raise ValidationFailure('verify failure')
def _validate(rrset, rrsigset, keys, origin=None, now=None):
"""Validate an RRset against a signature RRset, throwing an exception
if none of the signatures validate.
*rrset*, the RRset to validate. This can be a
``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``)
tuple.
*rrsigset*, the signature RRset. This can be a
``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``)
tuple.
*keys*, the key dictionary, used to find the DNSKEY associated
with a given name. The dictionary is keyed by a
``dns.name.Name``, and has ``dns.node.Node`` or
``dns.rdataset.Rdataset`` values.
*origin*, a ``dns.name.Name``, the origin to use for relative names;
defaults to None.
*now*, an ``int`` or ``None``, the time, in seconds since the epoch, to
use as the current time when validating. If ``None``, the actual current
time is used.
Raises ``ValidationFailure`` if the signature is expired, not yet valid,
the public key is invalid, the algorithm is unknown, the verification
fails, etc.
"""
if isinstance(origin, str):
origin = dns.name.from_text(origin, dns.name.root)
if isinstance(rrset, tuple):
rrname = rrset[0]
else:
rrname = rrset.name
if isinstance(rrsigset, tuple):
rrsigname = rrsigset[0]
rrsigrdataset = rrsigset[1]
else:
rrsigname = rrsigset.name
rrsigrdataset = rrsigset
rrname = rrname.choose_relativity(origin)
rrsigname = rrsigname.choose_relativity(origin)
if rrname != rrsigname:
raise ValidationFailure("owner names do not match")
for rrsig in rrsigrdataset:
try:
_validate_rrsig(rrset, rrsig, keys, origin, now)
return
except (ValidationFailure, UnsupportedAlgorithm):
pass
raise ValidationFailure("no RRSIGs validated")
class NSEC3Hash(dns.enum.IntEnum):
"""NSEC3 hash algorithm"""
SHA1 = 1
@classmethod
def _maximum(cls):
return 255
def nsec3_hash(domain, salt, iterations, algorithm):
"""
Calculate the NSEC3 hash, according to
https://tools.ietf.org/html/rfc5155#section-5
*domain*, a ``dns.name.Name`` or ``str``, the name to hash.
*salt*, a ``str``, ``bytes``, or ``None``, the hash salt. If a
string, it is decoded as a hex string.
*iterations*, an ``int``, the number of iterations.
*algorithm*, a ``str`` or ``int``, the hash algorithm.
The only defined algorithm is SHA1.
Returns a ``str``, the encoded NSEC3 hash.
"""
b32_conversion = str.maketrans(
"ABCDEFGHIJKLMNOPQRSTUVWXYZ234567", "0123456789ABCDEFGHIJKLMNOPQRSTUV"
)
try:
if isinstance(algorithm, str):
algorithm = NSEC3Hash[algorithm.upper()]
except Exception:
raise ValueError("Wrong hash algorithm (only SHA1 is supported)")
if algorithm != NSEC3Hash.SHA1:
raise ValueError("Wrong hash algorithm (only SHA1 is supported)")
salt_encoded = salt
if salt is None:
salt_encoded = b''
elif isinstance(salt, str):
if len(salt) % 2 == 0:
salt_encoded = bytes.fromhex(salt)
else:
raise ValueError("Invalid salt length")
if not isinstance(domain, dns.name.Name):
domain = dns.name.from_text(domain)
domain_encoded = domain.canonicalize().to_wire()
digest = hashlib.sha1(domain_encoded + salt_encoded).digest()
for _ in range(iterations):
digest = hashlib.sha1(digest + salt_encoded).digest()
output = base64.b32encode(digest).decode("utf-8")
output = output.translate(b32_conversion)
return output
def _need_pyca(*args, **kwargs):
raise ImportError("DNSSEC validation requires " +
"python cryptography") # pragma: no cover
try:
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography.hazmat.primitives.asymmetric import utils
from cryptography.hazmat.primitives.asymmetric import dsa
from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.asymmetric import ed25519
from cryptography.hazmat.primitives.asymmetric import ed448
from cryptography.hazmat.primitives.asymmetric import rsa
except ImportError: # pragma: no cover
validate = _need_pyca
validate_rrsig = _need_pyca
_have_pyca = False
else:
validate = _validate # type: ignore
validate_rrsig = _validate_rrsig # type: ignore
_have_pyca = True
### BEGIN generated Algorithm constants
RSAMD5 = Algorithm.RSAMD5
DH = Algorithm.DH
DSA = Algorithm.DSA
ECC = Algorithm.ECC
RSASHA1 = Algorithm.RSASHA1
DSANSEC3SHA1 = Algorithm.DSANSEC3SHA1
RSASHA1NSEC3SHA1 = Algorithm.RSASHA1NSEC3SHA1
RSASHA256 = Algorithm.RSASHA256
RSASHA512 = Algorithm.RSASHA512
ECCGOST = Algorithm.ECCGOST
ECDSAP256SHA256 = Algorithm.ECDSAP256SHA256
ECDSAP384SHA384 = Algorithm.ECDSAP384SHA384
ED25519 = Algorithm.ED25519
ED448 = Algorithm.ED448
INDIRECT = Algorithm.INDIRECT
PRIVATEDNS = Algorithm.PRIVATEDNS
PRIVATEOID = Algorithm.PRIVATEOID
### END generated Algorithm constants