You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
70 lines
1.8 KiB
70 lines
1.8 KiB
"""Python program for golden section search (straight-up copied from Wikipedia).
|
|
This implementation reuses function evaluations, saving 1/2 of the evaluations per
|
|
iteration, and returns a bounding interval."""
|
|
import logging
|
|
import math
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
invphi = (math.sqrt(5) - 1) / 2 # 1 / phi
|
|
invphi2 = (3 - math.sqrt(5)) / 2 # 1 / phi^2
|
|
|
|
def gss(f, a, b, tol=1e-4):
|
|
"""Golden-section search.
|
|
|
|
Given a function f with a single local minimum in
|
|
the interval [a,b], gss returns a subset interval
|
|
[c,d] that contains the minimum with d-c <= tol.
|
|
|
|
Example:
|
|
>>> f = lambda x: (x-2)**2
|
|
>>> a = 1
|
|
>>> b = 5
|
|
>>> tol = 1e-5
|
|
>>> (c,d) = gss(f, a, b, tol)
|
|
>>> print(c, d)
|
|
1.9999959837979107 2.0000050911830893
|
|
"""
|
|
|
|
(a, b) = (min(a, b), max(a, b))
|
|
h = b - a
|
|
if h <= tol:
|
|
return a, b
|
|
|
|
# Required steps to achieve tolerance
|
|
n = int(math.ceil(math.log(tol / h) / math.log(invphi)))
|
|
logger.info('About to perform %d iterations of golden section search to find the best framerate', n)
|
|
|
|
def f_wrapped(x, is_last_iter):
|
|
try:
|
|
return f(x, is_last_iter)
|
|
except TypeError:
|
|
return f(x)
|
|
|
|
c = a + invphi2 * h
|
|
d = a + invphi * h
|
|
yc = f_wrapped(c, n==1)
|
|
yd = f_wrapped(d, n==1)
|
|
|
|
for k in range(n-1):
|
|
if yc < yd:
|
|
b = d
|
|
d = c
|
|
yd = yc
|
|
h = invphi * h
|
|
c = a + invphi2 * h
|
|
yc = f_wrapped(c, k==n-2)
|
|
else:
|
|
a = c
|
|
c = d
|
|
yc = yd
|
|
h = invphi * h
|
|
d = a + invphi * h
|
|
yd = f(d, k==n-2)
|
|
|
|
if yc < yd:
|
|
return a, d
|
|
else:
|
|
return c, b |