You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2152 lines
72 KiB
2152 lines
72 KiB
# engine/cursor.py
|
|
# Copyright (C) 2005-2023 the SQLAlchemy authors and contributors
|
|
# <see AUTHORS file>
|
|
#
|
|
# This module is part of SQLAlchemy and is released under
|
|
# the MIT License: https://www.opensource.org/licenses/mit-license.php
|
|
# mypy: allow-untyped-defs, allow-untyped-calls
|
|
|
|
"""Define cursor-specific result set constructs including
|
|
:class:`.CursorResult`."""
|
|
|
|
|
|
from __future__ import annotations
|
|
|
|
import collections
|
|
import functools
|
|
import typing
|
|
from typing import Any
|
|
from typing import cast
|
|
from typing import ClassVar
|
|
from typing import Dict
|
|
from typing import Iterator
|
|
from typing import List
|
|
from typing import NoReturn
|
|
from typing import Optional
|
|
from typing import overload
|
|
from typing import Sequence
|
|
from typing import Tuple
|
|
from typing import TYPE_CHECKING
|
|
from typing import TypeVar
|
|
from typing import Union
|
|
|
|
from .result import IteratorResult
|
|
from .result import MergedResult
|
|
from .result import Result
|
|
from .result import ResultMetaData
|
|
from .result import SimpleResultMetaData
|
|
from .result import tuplegetter
|
|
from .row import Row
|
|
from .. import exc
|
|
from .. import util
|
|
from ..sql import elements
|
|
from ..sql import sqltypes
|
|
from ..sql import util as sql_util
|
|
from ..sql.base import _generative
|
|
from ..sql.compiler import ResultColumnsEntry
|
|
from ..sql.compiler import RM_NAME
|
|
from ..sql.compiler import RM_OBJECTS
|
|
from ..sql.compiler import RM_RENDERED_NAME
|
|
from ..sql.compiler import RM_TYPE
|
|
from ..sql.type_api import TypeEngine
|
|
from ..util import compat
|
|
from ..util.typing import Literal
|
|
from ..util.typing import Self
|
|
|
|
|
|
if typing.TYPE_CHECKING:
|
|
from .base import Connection
|
|
from .default import DefaultExecutionContext
|
|
from .interfaces import _DBAPICursorDescription
|
|
from .interfaces import DBAPICursor
|
|
from .interfaces import Dialect
|
|
from .interfaces import ExecutionContext
|
|
from .result import _KeyIndexType
|
|
from .result import _KeyMapRecType
|
|
from .result import _KeyMapType
|
|
from .result import _KeyType
|
|
from .result import _ProcessorsType
|
|
from .result import _TupleGetterType
|
|
from ..sql.type_api import _ResultProcessorType
|
|
|
|
|
|
_T = TypeVar("_T", bound=Any)
|
|
|
|
|
|
# metadata entry tuple indexes.
|
|
# using raw tuple is faster than namedtuple.
|
|
# these match up to the positions in
|
|
# _CursorKeyMapRecType
|
|
MD_INDEX: Literal[0] = 0
|
|
"""integer index in cursor.description
|
|
|
|
"""
|
|
|
|
MD_RESULT_MAP_INDEX: Literal[1] = 1
|
|
"""integer index in compiled._result_columns"""
|
|
|
|
MD_OBJECTS: Literal[2] = 2
|
|
"""other string keys and ColumnElement obj that can match.
|
|
|
|
This comes from compiler.RM_OBJECTS / compiler.ResultColumnsEntry.objects
|
|
|
|
"""
|
|
|
|
MD_LOOKUP_KEY: Literal[3] = 3
|
|
"""string key we usually expect for key-based lookup
|
|
|
|
this comes from compiler.RM_NAME / compiler.ResultColumnsEntry.name
|
|
"""
|
|
|
|
|
|
MD_RENDERED_NAME: Literal[4] = 4
|
|
"""name that is usually in cursor.description
|
|
|
|
this comes from compiler.RENDERED_NAME / compiler.ResultColumnsEntry.keyname
|
|
"""
|
|
|
|
|
|
MD_PROCESSOR: Literal[5] = 5
|
|
"""callable to process a result value into a row"""
|
|
|
|
MD_UNTRANSLATED: Literal[6] = 6
|
|
"""raw name from cursor.description"""
|
|
|
|
|
|
_CursorKeyMapRecType = Tuple[
|
|
Optional[int], # MD_INDEX, None means the record is ambiguously named
|
|
int, # MD_RESULT_MAP_INDEX
|
|
List[Any], # MD_OBJECTS
|
|
str, # MD_LOOKUP_KEY
|
|
str, # MD_RENDERED_NAME
|
|
Optional["_ResultProcessorType"], # MD_PROCESSOR
|
|
Optional[str], # MD_UNTRANSLATED
|
|
]
|
|
|
|
_CursorKeyMapType = Dict["_KeyType", _CursorKeyMapRecType]
|
|
|
|
# same as _CursorKeyMapRecType except the MD_INDEX value is definitely
|
|
# not None
|
|
_NonAmbigCursorKeyMapRecType = Tuple[
|
|
int,
|
|
int,
|
|
List[Any],
|
|
str,
|
|
str,
|
|
Optional["_ResultProcessorType"],
|
|
str,
|
|
]
|
|
|
|
|
|
class CursorResultMetaData(ResultMetaData):
|
|
"""Result metadata for DBAPI cursors."""
|
|
|
|
__slots__ = (
|
|
"_keymap",
|
|
"_processors",
|
|
"_keys",
|
|
"_keymap_by_result_column_idx",
|
|
"_tuplefilter",
|
|
"_translated_indexes",
|
|
"_safe_for_cache",
|
|
"_unpickled"
|
|
# don't need _unique_filters support here for now. Can be added
|
|
# if a need arises.
|
|
)
|
|
|
|
_keymap: _CursorKeyMapType
|
|
_processors: _ProcessorsType
|
|
_keymap_by_result_column_idx: Optional[Dict[int, _KeyMapRecType]]
|
|
_unpickled: bool
|
|
_safe_for_cache: bool
|
|
_translated_indexes: Optional[List[int]]
|
|
|
|
returns_rows: ClassVar[bool] = True
|
|
|
|
def _has_key(self, key: Any) -> bool:
|
|
return key in self._keymap
|
|
|
|
def _for_freeze(self) -> ResultMetaData:
|
|
return SimpleResultMetaData(
|
|
self._keys,
|
|
extra=[self._keymap[key][MD_OBJECTS] for key in self._keys],
|
|
)
|
|
|
|
def _make_new_metadata(
|
|
self,
|
|
*,
|
|
unpickled: bool,
|
|
processors: _ProcessorsType,
|
|
keys: Sequence[str],
|
|
keymap: _KeyMapType,
|
|
tuplefilter: Optional[_TupleGetterType],
|
|
translated_indexes: Optional[List[int]],
|
|
safe_for_cache: bool,
|
|
keymap_by_result_column_idx: Any,
|
|
) -> CursorResultMetaData:
|
|
new_obj = self.__class__.__new__(self.__class__)
|
|
new_obj._unpickled = unpickled
|
|
new_obj._processors = processors
|
|
new_obj._keys = keys
|
|
new_obj._keymap = keymap
|
|
new_obj._tuplefilter = tuplefilter
|
|
new_obj._translated_indexes = translated_indexes
|
|
new_obj._safe_for_cache = safe_for_cache
|
|
new_obj._keymap_by_result_column_idx = keymap_by_result_column_idx
|
|
return new_obj
|
|
|
|
def _remove_processors(self) -> CursorResultMetaData:
|
|
assert not self._tuplefilter
|
|
return self._make_new_metadata(
|
|
unpickled=self._unpickled,
|
|
processors=[None] * len(self._processors),
|
|
tuplefilter=None,
|
|
translated_indexes=None,
|
|
keymap={
|
|
key: value[0:5] + (None,) + value[6:]
|
|
for key, value in self._keymap.items()
|
|
},
|
|
keys=self._keys,
|
|
safe_for_cache=self._safe_for_cache,
|
|
keymap_by_result_column_idx=self._keymap_by_result_column_idx,
|
|
)
|
|
|
|
def _splice_horizontally(
|
|
self, other: CursorResultMetaData
|
|
) -> CursorResultMetaData:
|
|
|
|
assert not self._tuplefilter
|
|
|
|
keymap = self._keymap.copy()
|
|
offset = len(self._keys)
|
|
keymap.update(
|
|
{
|
|
key: (
|
|
# int index should be None for ambiguous key
|
|
value[0] + offset
|
|
if value[0] is not None and key not in keymap
|
|
else None,
|
|
value[1] + offset,
|
|
*value[2:],
|
|
)
|
|
for key, value in other._keymap.items()
|
|
}
|
|
)
|
|
|
|
return self._make_new_metadata(
|
|
unpickled=self._unpickled,
|
|
processors=self._processors + other._processors, # type: ignore
|
|
tuplefilter=None,
|
|
translated_indexes=None,
|
|
keys=self._keys + other._keys, # type: ignore
|
|
keymap=keymap,
|
|
safe_for_cache=self._safe_for_cache,
|
|
keymap_by_result_column_idx={
|
|
metadata_entry[MD_RESULT_MAP_INDEX]: metadata_entry
|
|
for metadata_entry in keymap.values()
|
|
},
|
|
)
|
|
|
|
def _reduce(self, keys: Sequence[_KeyIndexType]) -> ResultMetaData:
|
|
recs = list(self._metadata_for_keys(keys))
|
|
|
|
indexes = [rec[MD_INDEX] for rec in recs]
|
|
new_keys: List[str] = [rec[MD_LOOKUP_KEY] for rec in recs]
|
|
|
|
if self._translated_indexes:
|
|
indexes = [self._translated_indexes[idx] for idx in indexes]
|
|
tup = tuplegetter(*indexes)
|
|
new_recs = [(index,) + rec[1:] for index, rec in enumerate(recs)]
|
|
|
|
keymap: _KeyMapType = {rec[MD_LOOKUP_KEY]: rec for rec in new_recs}
|
|
# TODO: need unit test for:
|
|
# result = connection.execute("raw sql, no columns").scalars()
|
|
# without the "or ()" it's failing because MD_OBJECTS is None
|
|
keymap.update(
|
|
(e, new_rec)
|
|
for new_rec in new_recs
|
|
for e in new_rec[MD_OBJECTS] or ()
|
|
)
|
|
|
|
return self._make_new_metadata(
|
|
unpickled=self._unpickled,
|
|
processors=self._processors,
|
|
keys=new_keys,
|
|
tuplefilter=tup,
|
|
translated_indexes=indexes,
|
|
keymap=keymap,
|
|
safe_for_cache=self._safe_for_cache,
|
|
keymap_by_result_column_idx=self._keymap_by_result_column_idx,
|
|
)
|
|
|
|
def _adapt_to_context(self, context: ExecutionContext) -> ResultMetaData:
|
|
"""When using a cached Compiled construct that has a _result_map,
|
|
for a new statement that used the cached Compiled, we need to ensure
|
|
the keymap has the Column objects from our new statement as keys.
|
|
So here we rewrite keymap with new entries for the new columns
|
|
as matched to those of the cached statement.
|
|
|
|
"""
|
|
|
|
if not context.compiled or not context.compiled._result_columns:
|
|
return self
|
|
|
|
compiled_statement = context.compiled.statement
|
|
invoked_statement = context.invoked_statement
|
|
|
|
if TYPE_CHECKING:
|
|
assert isinstance(invoked_statement, elements.ClauseElement)
|
|
|
|
if compiled_statement is invoked_statement:
|
|
return self
|
|
|
|
assert invoked_statement is not None
|
|
|
|
# this is the most common path for Core statements when
|
|
# caching is used. In ORM use, this codepath is not really used
|
|
# as the _result_disable_adapt_to_context execution option is
|
|
# set by the ORM.
|
|
|
|
# make a copy and add the columns from the invoked statement
|
|
# to the result map.
|
|
|
|
keymap_by_position = self._keymap_by_result_column_idx
|
|
|
|
if keymap_by_position is None:
|
|
# first retrival from cache, this map will not be set up yet,
|
|
# initialize lazily
|
|
keymap_by_position = self._keymap_by_result_column_idx = {
|
|
metadata_entry[MD_RESULT_MAP_INDEX]: metadata_entry
|
|
for metadata_entry in self._keymap.values()
|
|
}
|
|
|
|
assert not self._tuplefilter
|
|
return self._make_new_metadata(
|
|
keymap=compat.dict_union(
|
|
self._keymap,
|
|
{
|
|
new: keymap_by_position[idx]
|
|
for idx, new in enumerate(
|
|
invoked_statement._all_selected_columns
|
|
)
|
|
if idx in keymap_by_position
|
|
},
|
|
),
|
|
unpickled=self._unpickled,
|
|
processors=self._processors,
|
|
tuplefilter=None,
|
|
translated_indexes=None,
|
|
keys=self._keys,
|
|
safe_for_cache=self._safe_for_cache,
|
|
keymap_by_result_column_idx=self._keymap_by_result_column_idx,
|
|
)
|
|
|
|
def __init__(
|
|
self,
|
|
parent: CursorResult[Any],
|
|
cursor_description: _DBAPICursorDescription,
|
|
):
|
|
context = parent.context
|
|
self._tuplefilter = None
|
|
self._translated_indexes = None
|
|
self._safe_for_cache = self._unpickled = False
|
|
|
|
if context.result_column_struct:
|
|
(
|
|
result_columns,
|
|
cols_are_ordered,
|
|
textual_ordered,
|
|
ad_hoc_textual,
|
|
loose_column_name_matching,
|
|
) = context.result_column_struct
|
|
num_ctx_cols = len(result_columns)
|
|
else:
|
|
result_columns = ( # type: ignore
|
|
cols_are_ordered
|
|
) = (
|
|
num_ctx_cols
|
|
) = (
|
|
ad_hoc_textual
|
|
) = loose_column_name_matching = textual_ordered = False
|
|
|
|
# merge cursor.description with the column info
|
|
# present in the compiled structure, if any
|
|
raw = self._merge_cursor_description(
|
|
context,
|
|
cursor_description,
|
|
result_columns,
|
|
num_ctx_cols,
|
|
cols_are_ordered,
|
|
textual_ordered,
|
|
ad_hoc_textual,
|
|
loose_column_name_matching,
|
|
)
|
|
|
|
# processors in key order which are used when building up
|
|
# a row
|
|
self._processors = [
|
|
metadata_entry[MD_PROCESSOR] for metadata_entry in raw
|
|
]
|
|
|
|
# this is used when using this ResultMetaData in a Core-only cache
|
|
# retrieval context. it's initialized on first cache retrieval
|
|
# when the _result_disable_adapt_to_context execution option
|
|
# (which the ORM generally sets) is not set.
|
|
self._keymap_by_result_column_idx = None
|
|
|
|
# for compiled SQL constructs, copy additional lookup keys into
|
|
# the key lookup map, such as Column objects, labels,
|
|
# column keys and other names
|
|
if num_ctx_cols:
|
|
# keymap by primary string...
|
|
by_key = {
|
|
metadata_entry[MD_LOOKUP_KEY]: metadata_entry
|
|
for metadata_entry in raw
|
|
}
|
|
|
|
if len(by_key) != num_ctx_cols:
|
|
# if by-primary-string dictionary smaller than
|
|
# number of columns, assume we have dupes; (this check
|
|
# is also in place if string dictionary is bigger, as
|
|
# can occur when '*' was used as one of the compiled columns,
|
|
# which may or may not be suggestive of dupes), rewrite
|
|
# dupe records with "None" for index which results in
|
|
# ambiguous column exception when accessed.
|
|
#
|
|
# this is considered to be the less common case as it is not
|
|
# common to have dupe column keys in a SELECT statement.
|
|
#
|
|
# new in 1.4: get the complete set of all possible keys,
|
|
# strings, objects, whatever, that are dupes across two
|
|
# different records, first.
|
|
index_by_key: Dict[Any, Any] = {}
|
|
dupes = set()
|
|
for metadata_entry in raw:
|
|
for key in (metadata_entry[MD_RENDERED_NAME],) + (
|
|
metadata_entry[MD_OBJECTS] or ()
|
|
):
|
|
idx = metadata_entry[MD_INDEX]
|
|
# if this key has been associated with more than one
|
|
# positional index, it's a dupe
|
|
if index_by_key.setdefault(key, idx) != idx:
|
|
dupes.add(key)
|
|
|
|
# then put everything we have into the keymap excluding only
|
|
# those keys that are dupes.
|
|
self._keymap = {
|
|
obj_elem: metadata_entry
|
|
for metadata_entry in raw
|
|
if metadata_entry[MD_OBJECTS]
|
|
for obj_elem in metadata_entry[MD_OBJECTS]
|
|
if obj_elem not in dupes
|
|
}
|
|
|
|
# then for the dupe keys, put the "ambiguous column"
|
|
# record into by_key.
|
|
by_key.update(
|
|
{
|
|
key: (None, None, [], key, key, None, None)
|
|
for key in dupes
|
|
}
|
|
)
|
|
|
|
else:
|
|
|
|
# no dupes - copy secondary elements from compiled
|
|
# columns into self._keymap. this is the most common
|
|
# codepath for Core / ORM statement executions before the
|
|
# result metadata is cached
|
|
self._keymap = {
|
|
obj_elem: metadata_entry
|
|
for metadata_entry in raw
|
|
if metadata_entry[MD_OBJECTS]
|
|
for obj_elem in metadata_entry[MD_OBJECTS]
|
|
}
|
|
# update keymap with primary string names taking
|
|
# precedence
|
|
self._keymap.update(by_key)
|
|
else:
|
|
# no compiled objects to map, just create keymap by primary string
|
|
self._keymap = {
|
|
metadata_entry[MD_LOOKUP_KEY]: metadata_entry
|
|
for metadata_entry in raw
|
|
}
|
|
|
|
# update keymap with "translated" names. In SQLAlchemy this is a
|
|
# sqlite only thing, and in fact impacting only extremely old SQLite
|
|
# versions unlikely to be present in modern Python versions.
|
|
# however, the pyhive third party dialect is
|
|
# also using this hook, which means others still might use it as well.
|
|
# I dislike having this awkward hook here but as long as we need
|
|
# to use names in cursor.description in some cases we need to have
|
|
# some hook to accomplish this.
|
|
if not num_ctx_cols and context._translate_colname:
|
|
self._keymap.update(
|
|
{
|
|
metadata_entry[MD_UNTRANSLATED]: self._keymap[
|
|
metadata_entry[MD_LOOKUP_KEY]
|
|
]
|
|
for metadata_entry in raw
|
|
if metadata_entry[MD_UNTRANSLATED]
|
|
}
|
|
)
|
|
|
|
def _merge_cursor_description(
|
|
self,
|
|
context,
|
|
cursor_description,
|
|
result_columns,
|
|
num_ctx_cols,
|
|
cols_are_ordered,
|
|
textual_ordered,
|
|
ad_hoc_textual,
|
|
loose_column_name_matching,
|
|
):
|
|
"""Merge a cursor.description with compiled result column information.
|
|
|
|
There are at least four separate strategies used here, selected
|
|
depending on the type of SQL construct used to start with.
|
|
|
|
The most common case is that of the compiled SQL expression construct,
|
|
which generated the column names present in the raw SQL string and
|
|
which has the identical number of columns as were reported by
|
|
cursor.description. In this case, we assume a 1-1 positional mapping
|
|
between the entries in cursor.description and the compiled object.
|
|
This is also the most performant case as we disregard extracting /
|
|
decoding the column names present in cursor.description since we
|
|
already have the desired name we generated in the compiled SQL
|
|
construct.
|
|
|
|
The next common case is that of the completely raw string SQL,
|
|
such as passed to connection.execute(). In this case we have no
|
|
compiled construct to work with, so we extract and decode the
|
|
names from cursor.description and index those as the primary
|
|
result row target keys.
|
|
|
|
The remaining fairly common case is that of the textual SQL
|
|
that includes at least partial column information; this is when
|
|
we use a :class:`_expression.TextualSelect` construct.
|
|
This construct may have
|
|
unordered or ordered column information. In the ordered case, we
|
|
merge the cursor.description and the compiled construct's information
|
|
positionally, and warn if there are additional description names
|
|
present, however we still decode the names in cursor.description
|
|
as we don't have a guarantee that the names in the columns match
|
|
on these. In the unordered case, we match names in cursor.description
|
|
to that of the compiled construct based on name matching.
|
|
In both of these cases, the cursor.description names and the column
|
|
expression objects and names are indexed as result row target keys.
|
|
|
|
The final case is much less common, where we have a compiled
|
|
non-textual SQL expression construct, but the number of columns
|
|
in cursor.description doesn't match what's in the compiled
|
|
construct. We make the guess here that there might be textual
|
|
column expressions in the compiled construct that themselves include
|
|
a comma in them causing them to split. We do the same name-matching
|
|
as with textual non-ordered columns.
|
|
|
|
The name-matched system of merging is the same as that used by
|
|
SQLAlchemy for all cases up through the 0.9 series. Positional
|
|
matching for compiled SQL expressions was introduced in 1.0 as a
|
|
major performance feature, and positional matching for textual
|
|
:class:`_expression.TextualSelect` objects in 1.1.
|
|
As name matching is no longer
|
|
a common case, it was acceptable to factor it into smaller generator-
|
|
oriented methods that are easier to understand, but incur slightly
|
|
more performance overhead.
|
|
|
|
"""
|
|
|
|
if (
|
|
num_ctx_cols
|
|
and cols_are_ordered
|
|
and not textual_ordered
|
|
and num_ctx_cols == len(cursor_description)
|
|
):
|
|
self._keys = [elem[0] for elem in result_columns]
|
|
# pure positional 1-1 case; doesn't need to read
|
|
# the names from cursor.description
|
|
|
|
# most common case for Core and ORM
|
|
|
|
# this metadata is safe to cache because we are guaranteed
|
|
# to have the columns in the same order for new executions
|
|
self._safe_for_cache = True
|
|
return [
|
|
(
|
|
idx,
|
|
idx,
|
|
rmap_entry[RM_OBJECTS],
|
|
rmap_entry[RM_NAME],
|
|
rmap_entry[RM_RENDERED_NAME],
|
|
context.get_result_processor(
|
|
rmap_entry[RM_TYPE],
|
|
rmap_entry[RM_RENDERED_NAME],
|
|
cursor_description[idx][1],
|
|
),
|
|
None,
|
|
)
|
|
for idx, rmap_entry in enumerate(result_columns)
|
|
]
|
|
else:
|
|
|
|
# name-based or text-positional cases, where we need
|
|
# to read cursor.description names
|
|
|
|
if textual_ordered or (
|
|
ad_hoc_textual and len(cursor_description) == num_ctx_cols
|
|
):
|
|
self._safe_for_cache = True
|
|
# textual positional case
|
|
raw_iterator = self._merge_textual_cols_by_position(
|
|
context, cursor_description, result_columns
|
|
)
|
|
elif num_ctx_cols:
|
|
# compiled SQL with a mismatch of description cols
|
|
# vs. compiled cols, or textual w/ unordered columns
|
|
# the order of columns can change if the query is
|
|
# against a "select *", so not safe to cache
|
|
self._safe_for_cache = False
|
|
raw_iterator = self._merge_cols_by_name(
|
|
context,
|
|
cursor_description,
|
|
result_columns,
|
|
loose_column_name_matching,
|
|
)
|
|
else:
|
|
# no compiled SQL, just a raw string, order of columns
|
|
# can change for "select *"
|
|
self._safe_for_cache = False
|
|
raw_iterator = self._merge_cols_by_none(
|
|
context, cursor_description
|
|
)
|
|
|
|
return [
|
|
(
|
|
idx,
|
|
ridx,
|
|
obj,
|
|
cursor_colname,
|
|
cursor_colname,
|
|
context.get_result_processor(
|
|
mapped_type, cursor_colname, coltype
|
|
),
|
|
untranslated,
|
|
)
|
|
for (
|
|
idx,
|
|
ridx,
|
|
cursor_colname,
|
|
mapped_type,
|
|
coltype,
|
|
obj,
|
|
untranslated,
|
|
) in raw_iterator
|
|
]
|
|
|
|
def _colnames_from_description(self, context, cursor_description):
|
|
"""Extract column names and data types from a cursor.description.
|
|
|
|
Applies unicode decoding, column translation, "normalization",
|
|
and case sensitivity rules to the names based on the dialect.
|
|
|
|
"""
|
|
|
|
dialect = context.dialect
|
|
translate_colname = context._translate_colname
|
|
normalize_name = (
|
|
dialect.normalize_name if dialect.requires_name_normalize else None
|
|
)
|
|
untranslated = None
|
|
|
|
self._keys = []
|
|
|
|
for idx, rec in enumerate(cursor_description):
|
|
colname = rec[0]
|
|
coltype = rec[1]
|
|
|
|
if translate_colname:
|
|
colname, untranslated = translate_colname(colname)
|
|
|
|
if normalize_name:
|
|
colname = normalize_name(colname)
|
|
|
|
self._keys.append(colname)
|
|
|
|
yield idx, colname, untranslated, coltype
|
|
|
|
def _merge_textual_cols_by_position(
|
|
self, context, cursor_description, result_columns
|
|
):
|
|
num_ctx_cols = len(result_columns)
|
|
|
|
if num_ctx_cols > len(cursor_description):
|
|
util.warn(
|
|
"Number of columns in textual SQL (%d) is "
|
|
"smaller than number of columns requested (%d)"
|
|
% (num_ctx_cols, len(cursor_description))
|
|
)
|
|
seen = set()
|
|
for (
|
|
idx,
|
|
colname,
|
|
untranslated,
|
|
coltype,
|
|
) in self._colnames_from_description(context, cursor_description):
|
|
if idx < num_ctx_cols:
|
|
ctx_rec = result_columns[idx]
|
|
obj = ctx_rec[RM_OBJECTS]
|
|
ridx = idx
|
|
mapped_type = ctx_rec[RM_TYPE]
|
|
if obj[0] in seen:
|
|
raise exc.InvalidRequestError(
|
|
"Duplicate column expression requested "
|
|
"in textual SQL: %r" % obj[0]
|
|
)
|
|
seen.add(obj[0])
|
|
else:
|
|
mapped_type = sqltypes.NULLTYPE
|
|
obj = None
|
|
ridx = None
|
|
yield idx, ridx, colname, mapped_type, coltype, obj, untranslated
|
|
|
|
def _merge_cols_by_name(
|
|
self,
|
|
context,
|
|
cursor_description,
|
|
result_columns,
|
|
loose_column_name_matching,
|
|
):
|
|
match_map = self._create_description_match_map(
|
|
result_columns, loose_column_name_matching
|
|
)
|
|
mapped_type: TypeEngine[Any]
|
|
|
|
for (
|
|
idx,
|
|
colname,
|
|
untranslated,
|
|
coltype,
|
|
) in self._colnames_from_description(context, cursor_description):
|
|
try:
|
|
ctx_rec = match_map[colname]
|
|
except KeyError:
|
|
mapped_type = sqltypes.NULLTYPE
|
|
obj = None
|
|
result_columns_idx = None
|
|
else:
|
|
obj = ctx_rec[1]
|
|
mapped_type = ctx_rec[2]
|
|
result_columns_idx = ctx_rec[3]
|
|
yield (
|
|
idx,
|
|
result_columns_idx,
|
|
colname,
|
|
mapped_type,
|
|
coltype,
|
|
obj,
|
|
untranslated,
|
|
)
|
|
|
|
@classmethod
|
|
def _create_description_match_map(
|
|
cls,
|
|
result_columns: List[ResultColumnsEntry],
|
|
loose_column_name_matching: bool = False,
|
|
) -> Dict[
|
|
Union[str, object], Tuple[str, Tuple[Any, ...], TypeEngine[Any], int]
|
|
]:
|
|
"""when matching cursor.description to a set of names that are present
|
|
in a Compiled object, as is the case with TextualSelect, get all the
|
|
names we expect might match those in cursor.description.
|
|
"""
|
|
|
|
d: Dict[
|
|
Union[str, object],
|
|
Tuple[str, Tuple[Any, ...], TypeEngine[Any], int],
|
|
] = {}
|
|
for ridx, elem in enumerate(result_columns):
|
|
key = elem[RM_RENDERED_NAME]
|
|
if key in d:
|
|
# conflicting keyname - just add the column-linked objects
|
|
# to the existing record. if there is a duplicate column
|
|
# name in the cursor description, this will allow all of those
|
|
# objects to raise an ambiguous column error
|
|
e_name, e_obj, e_type, e_ridx = d[key]
|
|
d[key] = e_name, e_obj + elem[RM_OBJECTS], e_type, ridx
|
|
else:
|
|
d[key] = (elem[RM_NAME], elem[RM_OBJECTS], elem[RM_TYPE], ridx)
|
|
|
|
if loose_column_name_matching:
|
|
# when using a textual statement with an unordered set
|
|
# of columns that line up, we are expecting the user
|
|
# to be using label names in the SQL that match to the column
|
|
# expressions. Enable more liberal matching for this case;
|
|
# duplicate keys that are ambiguous will be fixed later.
|
|
for r_key in elem[RM_OBJECTS]:
|
|
d.setdefault(
|
|
r_key,
|
|
(elem[RM_NAME], elem[RM_OBJECTS], elem[RM_TYPE], ridx),
|
|
)
|
|
return d
|
|
|
|
def _merge_cols_by_none(self, context, cursor_description):
|
|
for (
|
|
idx,
|
|
colname,
|
|
untranslated,
|
|
coltype,
|
|
) in self._colnames_from_description(context, cursor_description):
|
|
yield (
|
|
idx,
|
|
None,
|
|
colname,
|
|
sqltypes.NULLTYPE,
|
|
coltype,
|
|
None,
|
|
untranslated,
|
|
)
|
|
|
|
@overload
|
|
def _key_fallback(
|
|
self, key: Any, err: Exception, raiseerr: Literal[True] = ...
|
|
) -> NoReturn:
|
|
...
|
|
|
|
@overload
|
|
def _key_fallback(
|
|
self, key: Any, err: Exception, raiseerr: Literal[False] = ...
|
|
) -> None:
|
|
...
|
|
|
|
@overload
|
|
def _key_fallback(
|
|
self, key: Any, err: Exception, raiseerr: bool = ...
|
|
) -> Optional[NoReturn]:
|
|
...
|
|
|
|
def _key_fallback(
|
|
self, key: Any, err: Exception, raiseerr: bool = True
|
|
) -> Optional[NoReturn]:
|
|
|
|
if raiseerr:
|
|
if self._unpickled and isinstance(key, elements.ColumnElement):
|
|
raise exc.NoSuchColumnError(
|
|
"Row was unpickled; lookup by ColumnElement "
|
|
"is unsupported"
|
|
) from err
|
|
else:
|
|
raise exc.NoSuchColumnError(
|
|
"Could not locate column in row for column '%s'"
|
|
% util.string_or_unprintable(key)
|
|
) from err
|
|
else:
|
|
return None
|
|
|
|
def _raise_for_ambiguous_column_name(self, rec):
|
|
raise exc.InvalidRequestError(
|
|
"Ambiguous column name '%s' in "
|
|
"result set column descriptions" % rec[MD_LOOKUP_KEY]
|
|
)
|
|
|
|
def _index_for_key(self, key: Any, raiseerr: bool = True) -> Optional[int]:
|
|
# TODO: can consider pre-loading ints and negative ints
|
|
# into _keymap - also no coverage here
|
|
if isinstance(key, int):
|
|
key = self._keys[key]
|
|
|
|
try:
|
|
rec = self._keymap[key]
|
|
except KeyError as ke:
|
|
x = self._key_fallback(key, ke, raiseerr)
|
|
assert x is None
|
|
return None
|
|
|
|
index = rec[0]
|
|
|
|
if index is None:
|
|
self._raise_for_ambiguous_column_name(rec)
|
|
return index
|
|
|
|
def _indexes_for_keys(self, keys):
|
|
|
|
try:
|
|
return [self._keymap[key][0] for key in keys]
|
|
except KeyError as ke:
|
|
# ensure it raises
|
|
CursorResultMetaData._key_fallback(self, ke.args[0], ke)
|
|
|
|
def _metadata_for_keys(
|
|
self, keys: Sequence[Any]
|
|
) -> Iterator[_NonAmbigCursorKeyMapRecType]:
|
|
for key in keys:
|
|
if int in key.__class__.__mro__:
|
|
key = self._keys[key]
|
|
|
|
try:
|
|
rec = self._keymap[key]
|
|
except KeyError as ke:
|
|
# ensure it raises
|
|
CursorResultMetaData._key_fallback(self, ke.args[0], ke)
|
|
|
|
index = rec[MD_INDEX]
|
|
|
|
if index is None:
|
|
self._raise_for_ambiguous_column_name(rec)
|
|
|
|
yield cast(_NonAmbigCursorKeyMapRecType, rec)
|
|
|
|
def __getstate__(self):
|
|
# TODO: consider serializing this as SimpleResultMetaData
|
|
return {
|
|
"_keymap": {
|
|
key: (
|
|
rec[MD_INDEX],
|
|
rec[MD_RESULT_MAP_INDEX],
|
|
[],
|
|
key,
|
|
rec[MD_RENDERED_NAME],
|
|
None,
|
|
None,
|
|
)
|
|
for key, rec in self._keymap.items()
|
|
if isinstance(key, (str, int))
|
|
},
|
|
"_keys": self._keys,
|
|
"_translated_indexes": self._translated_indexes,
|
|
}
|
|
|
|
def __setstate__(self, state):
|
|
self._processors = [None for _ in range(len(state["_keys"]))]
|
|
self._keymap = state["_keymap"]
|
|
|
|
self._keymap_by_result_column_idx = None
|
|
self._keys = state["_keys"]
|
|
self._unpickled = True
|
|
if state["_translated_indexes"]:
|
|
self._translated_indexes = cast(
|
|
"List[int]", state["_translated_indexes"]
|
|
)
|
|
self._tuplefilter = tuplegetter(*self._translated_indexes)
|
|
else:
|
|
self._translated_indexes = self._tuplefilter = None
|
|
|
|
|
|
class ResultFetchStrategy:
|
|
"""Define a fetching strategy for a result object.
|
|
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
"""
|
|
|
|
__slots__ = ()
|
|
|
|
alternate_cursor_description: Optional[_DBAPICursorDescription] = None
|
|
|
|
def soft_close(
|
|
self, result: CursorResult[Any], dbapi_cursor: Optional[DBAPICursor]
|
|
) -> None:
|
|
raise NotImplementedError()
|
|
|
|
def hard_close(
|
|
self, result: CursorResult[Any], dbapi_cursor: Optional[DBAPICursor]
|
|
) -> None:
|
|
raise NotImplementedError()
|
|
|
|
def yield_per(
|
|
self,
|
|
result: CursorResult[Any],
|
|
dbapi_cursor: Optional[DBAPICursor],
|
|
num: int,
|
|
) -> None:
|
|
return
|
|
|
|
def fetchone(
|
|
self,
|
|
result: CursorResult[Any],
|
|
dbapi_cursor: DBAPICursor,
|
|
hard_close: bool = False,
|
|
) -> Any:
|
|
raise NotImplementedError()
|
|
|
|
def fetchmany(
|
|
self,
|
|
result: CursorResult[Any],
|
|
dbapi_cursor: DBAPICursor,
|
|
size: Optional[int] = None,
|
|
) -> Any:
|
|
raise NotImplementedError()
|
|
|
|
def fetchall(
|
|
self,
|
|
result: CursorResult[Any],
|
|
dbapi_cursor: DBAPICursor,
|
|
) -> Any:
|
|
raise NotImplementedError()
|
|
|
|
def handle_exception(
|
|
self,
|
|
result: CursorResult[Any],
|
|
dbapi_cursor: Optional[DBAPICursor],
|
|
err: BaseException,
|
|
) -> NoReturn:
|
|
raise err
|
|
|
|
|
|
class NoCursorFetchStrategy(ResultFetchStrategy):
|
|
"""Cursor strategy for a result that has no open cursor.
|
|
|
|
There are two varieties of this strategy, one for DQL and one for
|
|
DML (and also DDL), each of which represent a result that had a cursor
|
|
but no longer has one.
|
|
|
|
"""
|
|
|
|
__slots__ = ()
|
|
|
|
def soft_close(self, result, dbapi_cursor):
|
|
pass
|
|
|
|
def hard_close(self, result, dbapi_cursor):
|
|
pass
|
|
|
|
def fetchone(self, result, dbapi_cursor, hard_close=False):
|
|
return self._non_result(result, None)
|
|
|
|
def fetchmany(self, result, dbapi_cursor, size=None):
|
|
return self._non_result(result, [])
|
|
|
|
def fetchall(self, result, dbapi_cursor):
|
|
return self._non_result(result, [])
|
|
|
|
def _non_result(self, result, default, err=None):
|
|
raise NotImplementedError()
|
|
|
|
|
|
class NoCursorDQLFetchStrategy(NoCursorFetchStrategy):
|
|
"""Cursor strategy for a DQL result that has no open cursor.
|
|
|
|
This is a result set that can return rows, i.e. for a SELECT, or for an
|
|
INSERT, UPDATE, DELETE that includes RETURNING. However it is in the state
|
|
where the cursor is closed and no rows remain available. The owning result
|
|
object may or may not be "hard closed", which determines if the fetch
|
|
methods send empty results or raise for closed result.
|
|
|
|
"""
|
|
|
|
__slots__ = ()
|
|
|
|
def _non_result(self, result, default, err=None):
|
|
if result.closed:
|
|
raise exc.ResourceClosedError(
|
|
"This result object is closed."
|
|
) from err
|
|
else:
|
|
return default
|
|
|
|
|
|
_NO_CURSOR_DQL = NoCursorDQLFetchStrategy()
|
|
|
|
|
|
class NoCursorDMLFetchStrategy(NoCursorFetchStrategy):
|
|
"""Cursor strategy for a DML result that has no open cursor.
|
|
|
|
This is a result set that does not return rows, i.e. for an INSERT,
|
|
UPDATE, DELETE that does not include RETURNING.
|
|
|
|
"""
|
|
|
|
__slots__ = ()
|
|
|
|
def _non_result(self, result, default, err=None):
|
|
# we only expect to have a _NoResultMetaData() here right now.
|
|
assert not result._metadata.returns_rows
|
|
result._metadata._we_dont_return_rows(err)
|
|
|
|
|
|
_NO_CURSOR_DML = NoCursorDMLFetchStrategy()
|
|
|
|
|
|
class CursorFetchStrategy(ResultFetchStrategy):
|
|
"""Call fetch methods from a DBAPI cursor.
|
|
|
|
Alternate versions of this class may instead buffer the rows from
|
|
cursors or not use cursors at all.
|
|
|
|
"""
|
|
|
|
__slots__ = ()
|
|
|
|
def soft_close(
|
|
self, result: CursorResult[Any], dbapi_cursor: Optional[DBAPICursor]
|
|
) -> None:
|
|
result.cursor_strategy = _NO_CURSOR_DQL
|
|
|
|
def hard_close(
|
|
self, result: CursorResult[Any], dbapi_cursor: Optional[DBAPICursor]
|
|
) -> None:
|
|
result.cursor_strategy = _NO_CURSOR_DQL
|
|
|
|
def handle_exception(
|
|
self,
|
|
result: CursorResult[Any],
|
|
dbapi_cursor: Optional[DBAPICursor],
|
|
err: BaseException,
|
|
) -> NoReturn:
|
|
result.connection._handle_dbapi_exception(
|
|
err, None, None, dbapi_cursor, result.context
|
|
)
|
|
|
|
def yield_per(
|
|
self,
|
|
result: CursorResult[Any],
|
|
dbapi_cursor: Optional[DBAPICursor],
|
|
num: int,
|
|
) -> None:
|
|
result.cursor_strategy = BufferedRowCursorFetchStrategy(
|
|
dbapi_cursor,
|
|
{"max_row_buffer": num},
|
|
initial_buffer=collections.deque(),
|
|
growth_factor=0,
|
|
)
|
|
|
|
def fetchone(
|
|
self,
|
|
result: CursorResult[Any],
|
|
dbapi_cursor: DBAPICursor,
|
|
hard_close: bool = False,
|
|
) -> Any:
|
|
try:
|
|
row = dbapi_cursor.fetchone()
|
|
if row is None:
|
|
result._soft_close(hard=hard_close)
|
|
return row
|
|
except BaseException as e:
|
|
self.handle_exception(result, dbapi_cursor, e)
|
|
|
|
def fetchmany(
|
|
self,
|
|
result: CursorResult[Any],
|
|
dbapi_cursor: DBAPICursor,
|
|
size: Optional[int] = None,
|
|
) -> Any:
|
|
try:
|
|
if size is None:
|
|
l = dbapi_cursor.fetchmany()
|
|
else:
|
|
l = dbapi_cursor.fetchmany(size)
|
|
|
|
if not l:
|
|
result._soft_close()
|
|
return l
|
|
except BaseException as e:
|
|
self.handle_exception(result, dbapi_cursor, e)
|
|
|
|
def fetchall(
|
|
self,
|
|
result: CursorResult[Any],
|
|
dbapi_cursor: DBAPICursor,
|
|
) -> Any:
|
|
try:
|
|
rows = dbapi_cursor.fetchall()
|
|
result._soft_close()
|
|
return rows
|
|
except BaseException as e:
|
|
self.handle_exception(result, dbapi_cursor, e)
|
|
|
|
|
|
_DEFAULT_FETCH = CursorFetchStrategy()
|
|
|
|
|
|
class BufferedRowCursorFetchStrategy(CursorFetchStrategy):
|
|
"""A cursor fetch strategy with row buffering behavior.
|
|
|
|
This strategy buffers the contents of a selection of rows
|
|
before ``fetchone()`` is called. This is to allow the results of
|
|
``cursor.description`` to be available immediately, when
|
|
interfacing with a DB-API that requires rows to be consumed before
|
|
this information is available (currently psycopg2, when used with
|
|
server-side cursors).
|
|
|
|
The pre-fetching behavior fetches only one row initially, and then
|
|
grows its buffer size by a fixed amount with each successive need
|
|
for additional rows up the ``max_row_buffer`` size, which defaults
|
|
to 1000::
|
|
|
|
with psycopg2_engine.connect() as conn:
|
|
|
|
result = conn.execution_options(
|
|
stream_results=True, max_row_buffer=50
|
|
).execute(text("select * from table"))
|
|
|
|
.. versionadded:: 1.4 ``max_row_buffer`` may now exceed 1000 rows.
|
|
|
|
.. seealso::
|
|
|
|
:ref:`psycopg2_execution_options`
|
|
"""
|
|
|
|
__slots__ = ("_max_row_buffer", "_rowbuffer", "_bufsize", "_growth_factor")
|
|
|
|
def __init__(
|
|
self,
|
|
dbapi_cursor,
|
|
execution_options,
|
|
growth_factor=5,
|
|
initial_buffer=None,
|
|
):
|
|
self._max_row_buffer = execution_options.get("max_row_buffer", 1000)
|
|
|
|
if initial_buffer is not None:
|
|
self._rowbuffer = initial_buffer
|
|
else:
|
|
self._rowbuffer = collections.deque(dbapi_cursor.fetchmany(1))
|
|
self._growth_factor = growth_factor
|
|
|
|
if growth_factor:
|
|
self._bufsize = min(self._max_row_buffer, self._growth_factor)
|
|
else:
|
|
self._bufsize = self._max_row_buffer
|
|
|
|
@classmethod
|
|
def create(cls, result):
|
|
return BufferedRowCursorFetchStrategy(
|
|
result.cursor,
|
|
result.context.execution_options,
|
|
)
|
|
|
|
def _buffer_rows(self, result, dbapi_cursor):
|
|
"""this is currently used only by fetchone()."""
|
|
|
|
size = self._bufsize
|
|
try:
|
|
if size < 1:
|
|
new_rows = dbapi_cursor.fetchall()
|
|
else:
|
|
new_rows = dbapi_cursor.fetchmany(size)
|
|
except BaseException as e:
|
|
self.handle_exception(result, dbapi_cursor, e)
|
|
|
|
if not new_rows:
|
|
return
|
|
self._rowbuffer = collections.deque(new_rows)
|
|
if self._growth_factor and size < self._max_row_buffer:
|
|
self._bufsize = min(
|
|
self._max_row_buffer, size * self._growth_factor
|
|
)
|
|
|
|
def yield_per(self, result, dbapi_cursor, num):
|
|
self._growth_factor = 0
|
|
self._max_row_buffer = self._bufsize = num
|
|
|
|
def soft_close(self, result, dbapi_cursor):
|
|
self._rowbuffer.clear()
|
|
super().soft_close(result, dbapi_cursor)
|
|
|
|
def hard_close(self, result, dbapi_cursor):
|
|
self._rowbuffer.clear()
|
|
super().hard_close(result, dbapi_cursor)
|
|
|
|
def fetchone(self, result, dbapi_cursor, hard_close=False):
|
|
if not self._rowbuffer:
|
|
self._buffer_rows(result, dbapi_cursor)
|
|
if not self._rowbuffer:
|
|
try:
|
|
result._soft_close(hard=hard_close)
|
|
except BaseException as e:
|
|
self.handle_exception(result, dbapi_cursor, e)
|
|
return None
|
|
return self._rowbuffer.popleft()
|
|
|
|
def fetchmany(self, result, dbapi_cursor, size=None):
|
|
if size is None:
|
|
return self.fetchall(result, dbapi_cursor)
|
|
|
|
buf = list(self._rowbuffer)
|
|
lb = len(buf)
|
|
if size > lb:
|
|
try:
|
|
new = dbapi_cursor.fetchmany(size - lb)
|
|
except BaseException as e:
|
|
self.handle_exception(result, dbapi_cursor, e)
|
|
else:
|
|
if not new:
|
|
result._soft_close()
|
|
else:
|
|
buf.extend(new)
|
|
|
|
result = buf[0:size]
|
|
self._rowbuffer = collections.deque(buf[size:])
|
|
return result
|
|
|
|
def fetchall(self, result, dbapi_cursor):
|
|
try:
|
|
ret = list(self._rowbuffer) + list(dbapi_cursor.fetchall())
|
|
self._rowbuffer.clear()
|
|
result._soft_close()
|
|
return ret
|
|
except BaseException as e:
|
|
self.handle_exception(result, dbapi_cursor, e)
|
|
|
|
|
|
class FullyBufferedCursorFetchStrategy(CursorFetchStrategy):
|
|
"""A cursor strategy that buffers rows fully upon creation.
|
|
|
|
Used for operations where a result is to be delivered
|
|
after the database conversation can not be continued,
|
|
such as MSSQL INSERT...OUTPUT after an autocommit.
|
|
|
|
"""
|
|
|
|
__slots__ = ("_rowbuffer", "alternate_cursor_description")
|
|
|
|
def __init__(
|
|
self, dbapi_cursor, alternate_description=None, initial_buffer=None
|
|
):
|
|
self.alternate_cursor_description = alternate_description
|
|
if initial_buffer is not None:
|
|
self._rowbuffer = collections.deque(initial_buffer)
|
|
else:
|
|
self._rowbuffer = collections.deque(dbapi_cursor.fetchall())
|
|
|
|
def yield_per(self, result, dbapi_cursor, num):
|
|
pass
|
|
|
|
def soft_close(self, result, dbapi_cursor):
|
|
self._rowbuffer.clear()
|
|
super().soft_close(result, dbapi_cursor)
|
|
|
|
def hard_close(self, result, dbapi_cursor):
|
|
self._rowbuffer.clear()
|
|
super().hard_close(result, dbapi_cursor)
|
|
|
|
def fetchone(self, result, dbapi_cursor, hard_close=False):
|
|
if self._rowbuffer:
|
|
return self._rowbuffer.popleft()
|
|
else:
|
|
result._soft_close(hard=hard_close)
|
|
return None
|
|
|
|
def fetchmany(self, result, dbapi_cursor, size=None):
|
|
if size is None:
|
|
return self.fetchall(result, dbapi_cursor)
|
|
|
|
buf = list(self._rowbuffer)
|
|
rows = buf[0:size]
|
|
self._rowbuffer = collections.deque(buf[size:])
|
|
if not rows:
|
|
result._soft_close()
|
|
return rows
|
|
|
|
def fetchall(self, result, dbapi_cursor):
|
|
ret = self._rowbuffer
|
|
self._rowbuffer = collections.deque()
|
|
result._soft_close()
|
|
return ret
|
|
|
|
|
|
class _NoResultMetaData(ResultMetaData):
|
|
__slots__ = ()
|
|
|
|
returns_rows = False
|
|
|
|
def _we_dont_return_rows(self, err=None):
|
|
raise exc.ResourceClosedError(
|
|
"This result object does not return rows. "
|
|
"It has been closed automatically."
|
|
) from err
|
|
|
|
def _index_for_key(self, keys, raiseerr):
|
|
self._we_dont_return_rows()
|
|
|
|
def _metadata_for_keys(self, key):
|
|
self._we_dont_return_rows()
|
|
|
|
def _reduce(self, keys):
|
|
self._we_dont_return_rows()
|
|
|
|
@property
|
|
def _keymap(self):
|
|
self._we_dont_return_rows()
|
|
|
|
@property
|
|
def keys(self):
|
|
self._we_dont_return_rows()
|
|
|
|
|
|
_NO_RESULT_METADATA = _NoResultMetaData()
|
|
|
|
|
|
def null_dml_result() -> IteratorResult[Any]:
|
|
it: IteratorResult[Any] = IteratorResult(_NoResultMetaData(), iter([]))
|
|
it._soft_close()
|
|
return it
|
|
|
|
|
|
class CursorResult(Result[_T]):
|
|
"""A Result that is representing state from a DBAPI cursor.
|
|
|
|
.. versionchanged:: 1.4 The :class:`.CursorResult``
|
|
class replaces the previous :class:`.ResultProxy` interface.
|
|
This classes are based on the :class:`.Result` calling API
|
|
which provides an updated usage model and calling facade for
|
|
SQLAlchemy Core and SQLAlchemy ORM.
|
|
|
|
Returns database rows via the :class:`.Row` class, which provides
|
|
additional API features and behaviors on top of the raw data returned by
|
|
the DBAPI. Through the use of filters such as the :meth:`.Result.scalars`
|
|
method, other kinds of objects may also be returned.
|
|
|
|
.. seealso::
|
|
|
|
:ref:`tutorial_selecting_data` - introductory material for accessing
|
|
:class:`_engine.CursorResult` and :class:`.Row` objects.
|
|
|
|
"""
|
|
|
|
__slots__ = (
|
|
"context",
|
|
"dialect",
|
|
"cursor",
|
|
"cursor_strategy",
|
|
"_echo",
|
|
"connection",
|
|
)
|
|
|
|
_metadata: Union[CursorResultMetaData, _NoResultMetaData]
|
|
_no_result_metadata = _NO_RESULT_METADATA
|
|
_soft_closed: bool = False
|
|
closed: bool = False
|
|
_is_cursor = True
|
|
|
|
context: DefaultExecutionContext
|
|
dialect: Dialect
|
|
cursor_strategy: ResultFetchStrategy
|
|
connection: Connection
|
|
|
|
def __init__(
|
|
self,
|
|
context: DefaultExecutionContext,
|
|
cursor_strategy: ResultFetchStrategy,
|
|
cursor_description: Optional[_DBAPICursorDescription],
|
|
):
|
|
self.context = context
|
|
self.dialect = context.dialect
|
|
self.cursor = context.cursor
|
|
self.cursor_strategy = cursor_strategy
|
|
self.connection = context.root_connection
|
|
self._echo = echo = (
|
|
self.connection._echo and context.engine._should_log_debug()
|
|
)
|
|
|
|
if cursor_description is not None:
|
|
# inline of Result._row_getter(), set up an initial row
|
|
# getter assuming no transformations will be called as this
|
|
# is the most common case
|
|
|
|
if echo:
|
|
log = self.context.connection._log_debug
|
|
|
|
def _log_row(row):
|
|
log("Row %r", sql_util._repr_row(row))
|
|
return row
|
|
|
|
self._row_logging_fn = log_row = _log_row
|
|
else:
|
|
log_row = None
|
|
|
|
metadata = self._init_metadata(context, cursor_description)
|
|
|
|
keymap = metadata._keymap
|
|
processors = metadata._processors
|
|
process_row = Row
|
|
key_style = process_row._default_key_style
|
|
_make_row = functools.partial(
|
|
process_row, metadata, processors, keymap, key_style
|
|
)
|
|
if log_row:
|
|
|
|
def _make_row_2(row):
|
|
made_row = _make_row(row)
|
|
assert log_row is not None
|
|
log_row(made_row)
|
|
return made_row
|
|
|
|
make_row = _make_row_2
|
|
else:
|
|
make_row = _make_row
|
|
self._set_memoized_attribute("_row_getter", make_row)
|
|
|
|
else:
|
|
self._metadata = self._no_result_metadata
|
|
|
|
def _init_metadata(self, context, cursor_description):
|
|
|
|
if context.compiled:
|
|
compiled = context.compiled
|
|
|
|
if compiled._cached_metadata:
|
|
metadata = compiled._cached_metadata
|
|
else:
|
|
metadata = CursorResultMetaData(self, cursor_description)
|
|
if metadata._safe_for_cache:
|
|
compiled._cached_metadata = metadata
|
|
|
|
# result rewrite/ adapt step. this is to suit the case
|
|
# when we are invoked against a cached Compiled object, we want
|
|
# to rewrite the ResultMetaData to reflect the Column objects
|
|
# that are in our current SQL statement object, not the one
|
|
# that is associated with the cached Compiled object.
|
|
# the Compiled object may also tell us to not
|
|
# actually do this step; this is to support the ORM where
|
|
# it is to produce a new Result object in any case, and will
|
|
# be using the cached Column objects against this database result
|
|
# so we don't want to rewrite them.
|
|
#
|
|
# Basically this step suits the use case where the end user
|
|
# is using Core SQL expressions and is accessing columns in the
|
|
# result row using row._mapping[table.c.column].
|
|
if (
|
|
not context.execution_options.get(
|
|
"_result_disable_adapt_to_context", False
|
|
)
|
|
and compiled._result_columns
|
|
and context.cache_hit is context.dialect.CACHE_HIT
|
|
and compiled.statement is not context.invoked_statement
|
|
):
|
|
metadata = metadata._adapt_to_context(context)
|
|
|
|
self._metadata = metadata
|
|
|
|
else:
|
|
self._metadata = metadata = CursorResultMetaData(
|
|
self, cursor_description
|
|
)
|
|
if self._echo:
|
|
context.connection._log_debug(
|
|
"Col %r", tuple(x[0] for x in cursor_description)
|
|
)
|
|
return metadata
|
|
|
|
def _soft_close(self, hard=False):
|
|
"""Soft close this :class:`_engine.CursorResult`.
|
|
|
|
This releases all DBAPI cursor resources, but leaves the
|
|
CursorResult "open" from a semantic perspective, meaning the
|
|
fetchXXX() methods will continue to return empty results.
|
|
|
|
This method is called automatically when:
|
|
|
|
* all result rows are exhausted using the fetchXXX() methods.
|
|
* cursor.description is None.
|
|
|
|
This method is **not public**, but is documented in order to clarify
|
|
the "autoclose" process used.
|
|
|
|
.. versionadded:: 1.0.0
|
|
|
|
.. seealso::
|
|
|
|
:meth:`_engine.CursorResult.close`
|
|
|
|
|
|
"""
|
|
|
|
if (not hard and self._soft_closed) or (hard and self.closed):
|
|
return
|
|
|
|
if hard:
|
|
self.closed = True
|
|
self.cursor_strategy.hard_close(self, self.cursor)
|
|
else:
|
|
self.cursor_strategy.soft_close(self, self.cursor)
|
|
|
|
if not self._soft_closed:
|
|
cursor = self.cursor
|
|
self.cursor = None # type: ignore
|
|
self.connection._safe_close_cursor(cursor)
|
|
self._soft_closed = True
|
|
|
|
@property
|
|
def inserted_primary_key_rows(self):
|
|
"""Return the value of
|
|
:attr:`_engine.CursorResult.inserted_primary_key`
|
|
as a row contained within a list; some dialects may support a
|
|
multiple row form as well.
|
|
|
|
.. note:: As indicated below, in current SQLAlchemy versions this
|
|
accessor is only useful beyond what's already supplied by
|
|
:attr:`_engine.CursorResult.inserted_primary_key` when using the
|
|
:ref:`postgresql_psycopg2` dialect. Future versions hope to
|
|
generalize this feature to more dialects.
|
|
|
|
This accessor is added to support dialects that offer the feature
|
|
that is currently implemented by the :ref:`psycopg2_executemany_mode`
|
|
feature, currently **only the psycopg2 dialect**, which provides
|
|
for many rows to be INSERTed at once while still retaining the
|
|
behavior of being able to return server-generated primary key values.
|
|
|
|
* **When using the psycopg2 dialect, or other dialects that may support
|
|
"fast executemany" style inserts in upcoming releases** : When
|
|
invoking an INSERT statement while passing a list of rows as the
|
|
second argument to :meth:`_engine.Connection.execute`, this accessor
|
|
will then provide a list of rows, where each row contains the primary
|
|
key value for each row that was INSERTed.
|
|
|
|
* **When using all other dialects / backends that don't yet support
|
|
this feature**: This accessor is only useful for **single row INSERT
|
|
statements**, and returns the same information as that of the
|
|
:attr:`_engine.CursorResult.inserted_primary_key` within a
|
|
single-element list. When an INSERT statement is executed in
|
|
conjunction with a list of rows to be INSERTed, the list will contain
|
|
one row per row inserted in the statement, however it will contain
|
|
``None`` for any server-generated values.
|
|
|
|
Future releases of SQLAlchemy will further generalize the
|
|
"fast execution helper" feature of psycopg2 to suit other dialects,
|
|
thus allowing this accessor to be of more general use.
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
.. seealso::
|
|
|
|
:attr:`_engine.CursorResult.inserted_primary_key`
|
|
|
|
"""
|
|
if not self.context.compiled:
|
|
raise exc.InvalidRequestError(
|
|
"Statement is not a compiled " "expression construct."
|
|
)
|
|
elif not self.context.isinsert:
|
|
raise exc.InvalidRequestError(
|
|
"Statement is not an insert() " "expression construct."
|
|
)
|
|
elif self.context._is_explicit_returning:
|
|
raise exc.InvalidRequestError(
|
|
"Can't call inserted_primary_key "
|
|
"when returning() "
|
|
"is used."
|
|
)
|
|
return self.context.inserted_primary_key_rows
|
|
|
|
@property
|
|
def inserted_primary_key(self):
|
|
"""Return the primary key for the row just inserted.
|
|
|
|
The return value is a :class:`_result.Row` object representing
|
|
a named tuple of primary key values in the order in which the
|
|
primary key columns are configured in the source
|
|
:class:`_schema.Table`.
|
|
|
|
.. versionchanged:: 1.4.8 - the
|
|
:attr:`_engine.CursorResult.inserted_primary_key`
|
|
value is now a named tuple via the :class:`_result.Row` class,
|
|
rather than a plain tuple.
|
|
|
|
This accessor only applies to single row :func:`_expression.insert`
|
|
constructs which did not explicitly specify
|
|
:meth:`_expression.Insert.returning`. Support for multirow inserts,
|
|
while not yet available for most backends, would be accessed using
|
|
the :attr:`_engine.CursorResult.inserted_primary_key_rows` accessor.
|
|
|
|
Note that primary key columns which specify a server_default clause, or
|
|
otherwise do not qualify as "autoincrement" columns (see the notes at
|
|
:class:`_schema.Column`), and were generated using the database-side
|
|
default, will appear in this list as ``None`` unless the backend
|
|
supports "returning" and the insert statement executed with the
|
|
"implicit returning" enabled.
|
|
|
|
Raises :class:`~sqlalchemy.exc.InvalidRequestError` if the executed
|
|
statement is not a compiled expression construct
|
|
or is not an insert() construct.
|
|
|
|
"""
|
|
|
|
if self.context.executemany:
|
|
raise exc.InvalidRequestError(
|
|
"This statement was an executemany call; if primary key "
|
|
"returning is supported, please "
|
|
"use .inserted_primary_key_rows."
|
|
)
|
|
|
|
ikp = self.inserted_primary_key_rows
|
|
if ikp:
|
|
return ikp[0]
|
|
else:
|
|
return None
|
|
|
|
def last_updated_params(self):
|
|
"""Return the collection of updated parameters from this
|
|
execution.
|
|
|
|
Raises :class:`~sqlalchemy.exc.InvalidRequestError` if the executed
|
|
statement is not a compiled expression construct
|
|
or is not an update() construct.
|
|
|
|
"""
|
|
if not self.context.compiled:
|
|
raise exc.InvalidRequestError(
|
|
"Statement is not a compiled " "expression construct."
|
|
)
|
|
elif not self.context.isupdate:
|
|
raise exc.InvalidRequestError(
|
|
"Statement is not an update() " "expression construct."
|
|
)
|
|
elif self.context.executemany:
|
|
return self.context.compiled_parameters
|
|
else:
|
|
return self.context.compiled_parameters[0]
|
|
|
|
def last_inserted_params(self):
|
|
"""Return the collection of inserted parameters from this
|
|
execution.
|
|
|
|
Raises :class:`~sqlalchemy.exc.InvalidRequestError` if the executed
|
|
statement is not a compiled expression construct
|
|
or is not an insert() construct.
|
|
|
|
"""
|
|
if not self.context.compiled:
|
|
raise exc.InvalidRequestError(
|
|
"Statement is not a compiled " "expression construct."
|
|
)
|
|
elif not self.context.isinsert:
|
|
raise exc.InvalidRequestError(
|
|
"Statement is not an insert() " "expression construct."
|
|
)
|
|
elif self.context.executemany:
|
|
return self.context.compiled_parameters
|
|
else:
|
|
return self.context.compiled_parameters[0]
|
|
|
|
@property
|
|
def returned_defaults_rows(self):
|
|
"""Return a list of rows each containing the values of default
|
|
columns that were fetched using
|
|
the :meth:`.ValuesBase.return_defaults` feature.
|
|
|
|
The return value is a list of :class:`.Row` objects.
|
|
|
|
.. versionadded:: 1.4
|
|
|
|
"""
|
|
return self.context.returned_default_rows
|
|
|
|
def splice_horizontally(self, other):
|
|
"""Return a new :class:`.CursorResult` that "horizontally splices"
|
|
together the rows of this :class:`.CursorResult` with that of another
|
|
:class:`.CursorResult`.
|
|
|
|
.. tip:: This method is for the benefit of the SQLAlchemy ORM and is
|
|
not intended for general use.
|
|
|
|
"horizontally splices" means that for each row in the first and second
|
|
result sets, a new row that concatenates the two rows together is
|
|
produced, which then becomes the new row. The incoming
|
|
:class:`.CursorResult` must have the identical number of rows. It is
|
|
typically expected that the two result sets come from the same sort
|
|
order as well, as the result rows are spliced together based on their
|
|
position in the result.
|
|
|
|
The expected use case here is so that multiple INSERT..RETURNING
|
|
statements against different tables can produce a single result
|
|
that looks like a JOIN of those two tables.
|
|
|
|
E.g.::
|
|
|
|
r1 = connection.execute(
|
|
users.insert().returning(users.c.user_name, users.c.user_id),
|
|
user_values
|
|
)
|
|
|
|
r2 = connection.execute(
|
|
addresses.insert().returning(
|
|
addresses.c.address_id,
|
|
addresses.c.address,
|
|
addresses.c.user_id,
|
|
),
|
|
address_values
|
|
)
|
|
|
|
rows = r1.splice_horizontally(r2).all()
|
|
assert (
|
|
rows ==
|
|
[
|
|
("john", 1, 1, "foo@bar.com", 1),
|
|
("jack", 2, 2, "bar@bat.com", 2),
|
|
]
|
|
)
|
|
|
|
.. versionadded:: 2.0
|
|
|
|
.. seealso::
|
|
|
|
:meth:`.CursorResult.splice_vertically`
|
|
|
|
|
|
"""
|
|
|
|
clone = self._generate()
|
|
total_rows = [
|
|
tuple(r1) + tuple(r2)
|
|
for r1, r2 in zip(
|
|
list(self._raw_row_iterator()),
|
|
list(other._raw_row_iterator()),
|
|
)
|
|
]
|
|
|
|
clone._metadata = clone._metadata._splice_horizontally(other._metadata)
|
|
|
|
clone.cursor_strategy = FullyBufferedCursorFetchStrategy(
|
|
None,
|
|
initial_buffer=total_rows,
|
|
)
|
|
clone._reset_memoizations()
|
|
return clone
|
|
|
|
def splice_vertically(self, other):
|
|
"""Return a new :class:`.CursorResult` that "vertically splices",
|
|
i.e. "extends", the rows of this :class:`.CursorResult` with that of
|
|
another :class:`.CursorResult`.
|
|
|
|
.. tip:: This method is for the benefit of the SQLAlchemy ORM and is
|
|
not intended for general use.
|
|
|
|
"vertically splices" means the rows of the given result are appended to
|
|
the rows of this cursor result. The incoming :class:`.CursorResult`
|
|
must have rows that represent the identical list of columns in the
|
|
identical order as they are in this :class:`.CursorResult`.
|
|
|
|
.. versionadded:: 2.0
|
|
|
|
.. seealso::
|
|
|
|
:meth:`.CursorResult.splice_horizontally`
|
|
|
|
"""
|
|
clone = self._generate()
|
|
total_rows = list(self._raw_row_iterator()) + list(
|
|
other._raw_row_iterator()
|
|
)
|
|
|
|
clone.cursor_strategy = FullyBufferedCursorFetchStrategy(
|
|
None,
|
|
initial_buffer=total_rows,
|
|
)
|
|
clone._reset_memoizations()
|
|
return clone
|
|
|
|
def _rewind(self, rows):
|
|
"""rewind this result back to the given rowset.
|
|
|
|
this is used internally for the case where an :class:`.Insert`
|
|
construct combines the use of
|
|
:meth:`.Insert.return_defaults` along with the
|
|
"supplemental columns" feature.
|
|
|
|
"""
|
|
|
|
if self._echo:
|
|
self.context.connection._log_debug(
|
|
"CursorResult rewound %d row(s)", len(rows)
|
|
)
|
|
|
|
# the rows given are expected to be Row objects, so we
|
|
# have to clear out processors which have already run on these
|
|
# rows
|
|
self._metadata = cast(
|
|
CursorResultMetaData, self._metadata
|
|
)._remove_processors()
|
|
|
|
self.cursor_strategy = FullyBufferedCursorFetchStrategy(
|
|
None,
|
|
# TODO: if these are Row objects, can we save on not having to
|
|
# re-make new Row objects out of them a second time? is that
|
|
# what's actually happening right now? maybe look into this
|
|
initial_buffer=rows,
|
|
)
|
|
self._reset_memoizations()
|
|
return self
|
|
|
|
@property
|
|
def returned_defaults(self):
|
|
"""Return the values of default columns that were fetched using
|
|
the :meth:`.ValuesBase.return_defaults` feature.
|
|
|
|
The value is an instance of :class:`.Row`, or ``None``
|
|
if :meth:`.ValuesBase.return_defaults` was not used or if the
|
|
backend does not support RETURNING.
|
|
|
|
.. versionadded:: 0.9.0
|
|
|
|
.. seealso::
|
|
|
|
:meth:`.ValuesBase.return_defaults`
|
|
|
|
"""
|
|
|
|
if self.context.executemany:
|
|
raise exc.InvalidRequestError(
|
|
"This statement was an executemany call; if return defaults "
|
|
"is supported, please use .returned_defaults_rows."
|
|
)
|
|
|
|
rows = self.context.returned_default_rows
|
|
if rows:
|
|
return rows[0]
|
|
else:
|
|
return None
|
|
|
|
def lastrow_has_defaults(self):
|
|
"""Return ``lastrow_has_defaults()`` from the underlying
|
|
:class:`.ExecutionContext`.
|
|
|
|
See :class:`.ExecutionContext` for details.
|
|
|
|
"""
|
|
|
|
return self.context.lastrow_has_defaults()
|
|
|
|
def postfetch_cols(self):
|
|
"""Return ``postfetch_cols()`` from the underlying
|
|
:class:`.ExecutionContext`.
|
|
|
|
See :class:`.ExecutionContext` for details.
|
|
|
|
Raises :class:`~sqlalchemy.exc.InvalidRequestError` if the executed
|
|
statement is not a compiled expression construct
|
|
or is not an insert() or update() construct.
|
|
|
|
"""
|
|
|
|
if not self.context.compiled:
|
|
raise exc.InvalidRequestError(
|
|
"Statement is not a compiled " "expression construct."
|
|
)
|
|
elif not self.context.isinsert and not self.context.isupdate:
|
|
raise exc.InvalidRequestError(
|
|
"Statement is not an insert() or update() "
|
|
"expression construct."
|
|
)
|
|
return self.context.postfetch_cols
|
|
|
|
def prefetch_cols(self):
|
|
"""Return ``prefetch_cols()`` from the underlying
|
|
:class:`.ExecutionContext`.
|
|
|
|
See :class:`.ExecutionContext` for details.
|
|
|
|
Raises :class:`~sqlalchemy.exc.InvalidRequestError` if the executed
|
|
statement is not a compiled expression construct
|
|
or is not an insert() or update() construct.
|
|
|
|
"""
|
|
|
|
if not self.context.compiled:
|
|
raise exc.InvalidRequestError(
|
|
"Statement is not a compiled " "expression construct."
|
|
)
|
|
elif not self.context.isinsert and not self.context.isupdate:
|
|
raise exc.InvalidRequestError(
|
|
"Statement is not an insert() or update() "
|
|
"expression construct."
|
|
)
|
|
return self.context.prefetch_cols
|
|
|
|
def supports_sane_rowcount(self):
|
|
"""Return ``supports_sane_rowcount`` from the dialect.
|
|
|
|
See :attr:`_engine.CursorResult.rowcount` for background.
|
|
|
|
"""
|
|
|
|
return self.dialect.supports_sane_rowcount
|
|
|
|
def supports_sane_multi_rowcount(self):
|
|
"""Return ``supports_sane_multi_rowcount`` from the dialect.
|
|
|
|
See :attr:`_engine.CursorResult.rowcount` for background.
|
|
|
|
"""
|
|
|
|
return self.dialect.supports_sane_multi_rowcount
|
|
|
|
@util.memoized_property
|
|
def rowcount(self) -> int:
|
|
"""Return the 'rowcount' for this result.
|
|
|
|
The 'rowcount' reports the number of rows *matched*
|
|
by the WHERE criterion of an UPDATE or DELETE statement.
|
|
|
|
.. note::
|
|
|
|
Notes regarding :attr:`_engine.CursorResult.rowcount`:
|
|
|
|
|
|
* This attribute returns the number of rows *matched*,
|
|
which is not necessarily the same as the number of rows
|
|
that were actually *modified* - an UPDATE statement, for example,
|
|
may have no net change on a given row if the SET values
|
|
given are the same as those present in the row already.
|
|
Such a row would be matched but not modified.
|
|
On backends that feature both styles, such as MySQL,
|
|
rowcount is configured by default to return the match
|
|
count in all cases.
|
|
|
|
* :attr:`_engine.CursorResult.rowcount`
|
|
is *only* useful in conjunction
|
|
with an UPDATE or DELETE statement. Contrary to what the Python
|
|
DBAPI says, it does *not* return the
|
|
number of rows available from the results of a SELECT statement
|
|
as DBAPIs cannot support this functionality when rows are
|
|
unbuffered.
|
|
|
|
* :attr:`_engine.CursorResult.rowcount`
|
|
may not be fully implemented by
|
|
all dialects. In particular, most DBAPIs do not support an
|
|
aggregate rowcount result from an executemany call.
|
|
The :meth:`_engine.CursorResult.supports_sane_rowcount` and
|
|
:meth:`_engine.CursorResult.supports_sane_multi_rowcount` methods
|
|
will report from the dialect if each usage is known to be
|
|
supported.
|
|
|
|
* Statements that use RETURNING may not return a correct
|
|
rowcount.
|
|
|
|
.. seealso::
|
|
|
|
:ref:`tutorial_update_delete_rowcount` - in the :ref:`unified_tutorial`
|
|
|
|
""" # noqa: E501
|
|
try:
|
|
return self.context.rowcount
|
|
except BaseException as e:
|
|
self.cursor_strategy.handle_exception(self, self.cursor, e)
|
|
raise # not called
|
|
|
|
@property
|
|
def lastrowid(self):
|
|
"""Return the 'lastrowid' accessor on the DBAPI cursor.
|
|
|
|
This is a DBAPI specific method and is only functional
|
|
for those backends which support it, for statements
|
|
where it is appropriate. It's behavior is not
|
|
consistent across backends.
|
|
|
|
Usage of this method is normally unnecessary when
|
|
using insert() expression constructs; the
|
|
:attr:`~CursorResult.inserted_primary_key` attribute provides a
|
|
tuple of primary key values for a newly inserted row,
|
|
regardless of database backend.
|
|
|
|
"""
|
|
try:
|
|
return self.context.get_lastrowid()
|
|
except BaseException as e:
|
|
self.cursor_strategy.handle_exception(self, self.cursor, e)
|
|
|
|
@property
|
|
def returns_rows(self):
|
|
"""True if this :class:`_engine.CursorResult` returns zero or more
|
|
rows.
|
|
|
|
I.e. if it is legal to call the methods
|
|
:meth:`_engine.CursorResult.fetchone`,
|
|
:meth:`_engine.CursorResult.fetchmany`
|
|
:meth:`_engine.CursorResult.fetchall`.
|
|
|
|
Overall, the value of :attr:`_engine.CursorResult.returns_rows` should
|
|
always be synonymous with whether or not the DBAPI cursor had a
|
|
``.description`` attribute, indicating the presence of result columns,
|
|
noting that a cursor that returns zero rows still has a
|
|
``.description`` if a row-returning statement was emitted.
|
|
|
|
This attribute should be True for all results that are against
|
|
SELECT statements, as well as for DML statements INSERT/UPDATE/DELETE
|
|
that use RETURNING. For INSERT/UPDATE/DELETE statements that were
|
|
not using RETURNING, the value will usually be False, however
|
|
there are some dialect-specific exceptions to this, such as when
|
|
using the MSSQL / pyodbc dialect a SELECT is emitted inline in
|
|
order to retrieve an inserted primary key value.
|
|
|
|
|
|
"""
|
|
return self._metadata.returns_rows
|
|
|
|
@property
|
|
def is_insert(self):
|
|
"""True if this :class:`_engine.CursorResult` is the result
|
|
of a executing an expression language compiled
|
|
:func:`_expression.insert` construct.
|
|
|
|
When True, this implies that the
|
|
:attr:`inserted_primary_key` attribute is accessible,
|
|
assuming the statement did not include
|
|
a user defined "returning" construct.
|
|
|
|
"""
|
|
return self.context.isinsert
|
|
|
|
def _fetchiter_impl(self):
|
|
fetchone = self.cursor_strategy.fetchone
|
|
|
|
while True:
|
|
row = fetchone(self, self.cursor)
|
|
if row is None:
|
|
break
|
|
yield row
|
|
|
|
def _fetchone_impl(self, hard_close=False):
|
|
return self.cursor_strategy.fetchone(self, self.cursor, hard_close)
|
|
|
|
def _fetchall_impl(self):
|
|
return self.cursor_strategy.fetchall(self, self.cursor)
|
|
|
|
def _fetchmany_impl(self, size=None):
|
|
return self.cursor_strategy.fetchmany(self, self.cursor, size)
|
|
|
|
def _raw_row_iterator(self):
|
|
return self._fetchiter_impl()
|
|
|
|
def merge(self, *others: Result[Any]) -> MergedResult[Any]:
|
|
merged_result = super().merge(*others)
|
|
setup_rowcounts = self.context._has_rowcount
|
|
if setup_rowcounts:
|
|
merged_result.rowcount = sum(
|
|
cast("CursorResult[Any]", result).rowcount
|
|
for result in (self,) + others
|
|
)
|
|
return merged_result
|
|
|
|
def close(self) -> Any:
|
|
"""Close this :class:`_engine.CursorResult`.
|
|
|
|
This closes out the underlying DBAPI cursor corresponding to the
|
|
statement execution, if one is still present. Note that the DBAPI
|
|
cursor is automatically released when the :class:`_engine.CursorResult`
|
|
exhausts all available rows. :meth:`_engine.CursorResult.close` is
|
|
generally an optional method except in the case when discarding a
|
|
:class:`_engine.CursorResult` that still has additional rows pending
|
|
for fetch.
|
|
|
|
After this method is called, it is no longer valid to call upon
|
|
the fetch methods, which will raise a :class:`.ResourceClosedError`
|
|
on subsequent use.
|
|
|
|
.. seealso::
|
|
|
|
:ref:`connections_toplevel`
|
|
|
|
"""
|
|
self._soft_close(hard=True)
|
|
|
|
@_generative
|
|
def yield_per(self, num: int) -> Self:
|
|
self._yield_per = num
|
|
self.cursor_strategy.yield_per(self, self.cursor, num)
|
|
return self
|
|
|
|
|
|
ResultProxy = CursorResult
|