You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
bazarr/libs/sqlalchemy/dialects/postgresql/ranges.py

1030 lines
32 KiB

# dialects/postgresql/ranges.py
# Copyright (C) 2013-2024 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: https://www.opensource.org/licenses/mit-license.php
from __future__ import annotations
import dataclasses
from datetime import date
from datetime import datetime
from datetime import timedelta
from decimal import Decimal
from typing import Any
from typing import cast
from typing import Generic
from typing import List
from typing import Optional
from typing import overload
from typing import Sequence
from typing import Tuple
from typing import Type
from typing import TYPE_CHECKING
from typing import TypeVar
from typing import Union
from .operators import ADJACENT_TO
from .operators import CONTAINED_BY
from .operators import CONTAINS
from .operators import NOT_EXTEND_LEFT_OF
from .operators import NOT_EXTEND_RIGHT_OF
from .operators import OVERLAP
from .operators import STRICTLY_LEFT_OF
from .operators import STRICTLY_RIGHT_OF
from ... import types as sqltypes
from ...sql import operators
from ...sql.type_api import TypeEngine
from ...util import py310
from ...util.typing import Literal
if TYPE_CHECKING:
from ...sql.elements import ColumnElement
from ...sql.type_api import _TE
from ...sql.type_api import TypeEngineMixin
_T = TypeVar("_T", bound=Any)
_BoundsType = Literal["()", "[)", "(]", "[]"]
if py310:
dc_slots = {"slots": True}
dc_kwonly = {"kw_only": True}
else:
dc_slots = {}
dc_kwonly = {}
@dataclasses.dataclass(frozen=True, **dc_slots)
class Range(Generic[_T]):
"""Represent a PostgreSQL range.
E.g.::
r = Range(10, 50, bounds="()")
The calling style is similar to that of psycopg and psycopg2, in part
to allow easier migration from previous SQLAlchemy versions that used
these objects directly.
:param lower: Lower bound value, or None
:param upper: Upper bound value, or None
:param bounds: keyword-only, optional string value that is one of
``"()"``, ``"[)"``, ``"(]"``, ``"[]"``. Defaults to ``"[)"``.
:param empty: keyword-only, optional bool indicating this is an "empty"
range
.. versionadded:: 2.0
"""
lower: Optional[_T] = None
"""the lower bound"""
upper: Optional[_T] = None
"""the upper bound"""
if TYPE_CHECKING:
bounds: _BoundsType = dataclasses.field(default="[)")
empty: bool = dataclasses.field(default=False)
else:
bounds: _BoundsType = dataclasses.field(default="[)", **dc_kwonly)
empty: bool = dataclasses.field(default=False, **dc_kwonly)
if not py310:
def __init__(
self,
lower: Optional[_T] = None,
upper: Optional[_T] = None,
*,
bounds: _BoundsType = "[)",
empty: bool = False,
):
# no __slots__ either so we can update dict
self.__dict__.update(
{
"lower": lower,
"upper": upper,
"bounds": bounds,
"empty": empty,
}
)
def __bool__(self) -> bool:
return not self.empty
@property
def isempty(self) -> bool:
"A synonym for the 'empty' attribute."
return self.empty
@property
def is_empty(self) -> bool:
"A synonym for the 'empty' attribute."
return self.empty
@property
def lower_inc(self) -> bool:
"""Return True if the lower bound is inclusive."""
return self.bounds[0] == "["
@property
def lower_inf(self) -> bool:
"""Return True if this range is non-empty and lower bound is
infinite."""
return not self.empty and self.lower is None
@property
def upper_inc(self) -> bool:
"""Return True if the upper bound is inclusive."""
return self.bounds[1] == "]"
@property
def upper_inf(self) -> bool:
"""Return True if this range is non-empty and the upper bound is
infinite."""
return not self.empty and self.upper is None
@property
def __sa_type_engine__(self) -> AbstractSingleRange[_T]:
return AbstractSingleRange()
def _contains_value(self, value: _T) -> bool:
"""Return True if this range contains the given value."""
if self.empty:
return False
if self.lower is None:
return self.upper is None or (
value < self.upper
if self.bounds[1] == ")"
else value <= self.upper
)
if self.upper is None:
return ( # type: ignore
value > self.lower
if self.bounds[0] == "("
else value >= self.lower
)
return ( # type: ignore
value > self.lower
if self.bounds[0] == "("
else value >= self.lower
) and (
value < self.upper
if self.bounds[1] == ")"
else value <= self.upper
)
def _get_discrete_step(self) -> Any:
"Determine the “step” for this range, if it is a discrete one."
# See
# https://www.postgresql.org/docs/current/rangetypes.html#RANGETYPES-DISCRETE
# for the rationale
if isinstance(self.lower, int) or isinstance(self.upper, int):
return 1
elif isinstance(self.lower, datetime) or isinstance(
self.upper, datetime
):
# This is required, because a `isinstance(datetime.now(), date)`
# is True
return None
elif isinstance(self.lower, date) or isinstance(self.upper, date):
return timedelta(days=1)
else:
return None
def _compare_edges(
self,
value1: Optional[_T],
bound1: str,
value2: Optional[_T],
bound2: str,
only_values: bool = False,
) -> int:
"""Compare two range bounds.
Return -1, 0 or 1 respectively when `value1` is less than,
equal to or greater than `value2`.
When `only_value` is ``True``, do not consider the *inclusivity*
of the edges, just their values.
"""
value1_is_lower_bound = bound1 in {"[", "("}
value2_is_lower_bound = bound2 in {"[", "("}
# Infinite edges are equal when they are on the same side,
# otherwise a lower edge is considered less than the upper end
if value1 is value2 is None:
if value1_is_lower_bound == value2_is_lower_bound:
return 0
else:
return -1 if value1_is_lower_bound else 1
elif value1 is None:
return -1 if value1_is_lower_bound else 1
elif value2 is None:
return 1 if value2_is_lower_bound else -1
# Short path for trivial case
if bound1 == bound2 and value1 == value2:
return 0
value1_inc = bound1 in {"[", "]"}
value2_inc = bound2 in {"[", "]"}
step = self._get_discrete_step()
if step is not None:
# "Normalize" the two edges as '[)', to simplify successive
# logic when the range is discrete: otherwise we would need
# to handle the comparison between ``(0`` and ``[1`` that
# are equal when dealing with integers while for floats the
# former is lesser than the latter
if value1_is_lower_bound:
if not value1_inc:
value1 += step
value1_inc = True
else:
if value1_inc:
value1 += step
value1_inc = False
if value2_is_lower_bound:
if not value2_inc:
value2 += step
value2_inc = True
else:
if value2_inc:
value2 += step
value2_inc = False
if value1 < value2: # type: ignore
return -1
elif value1 > value2: # type: ignore
return 1
elif only_values:
return 0
else:
# Neither one is infinite but are equal, so we
# need to consider the respective inclusive/exclusive
# flag
if value1_inc and value2_inc:
return 0
elif not value1_inc and not value2_inc:
if value1_is_lower_bound == value2_is_lower_bound:
return 0
else:
return 1 if value1_is_lower_bound else -1
elif not value1_inc:
return 1 if value1_is_lower_bound else -1
elif not value2_inc:
return -1 if value2_is_lower_bound else 1
else:
return 0
def __eq__(self, other: Any) -> bool:
"""Compare this range to the `other` taking into account
bounds inclusivity, returning ``True`` if they are equal.
"""
if not isinstance(other, Range):
return NotImplemented
if self.empty and other.empty:
return True
elif self.empty != other.empty:
return False
slower = self.lower
slower_b = self.bounds[0]
olower = other.lower
olower_b = other.bounds[0]
supper = self.upper
supper_b = self.bounds[1]
oupper = other.upper
oupper_b = other.bounds[1]
return (
self._compare_edges(slower, slower_b, olower, olower_b) == 0
and self._compare_edges(supper, supper_b, oupper, oupper_b) == 0
)
def contained_by(self, other: Range[_T]) -> bool:
"Determine whether this range is a contained by `other`."
# Any range contains the empty one
if self.empty:
return True
# An empty range does not contain any range except the empty one
if other.empty:
return False
slower = self.lower
slower_b = self.bounds[0]
olower = other.lower
olower_b = other.bounds[0]
if self._compare_edges(slower, slower_b, olower, olower_b) < 0:
return False
supper = self.upper
supper_b = self.bounds[1]
oupper = other.upper
oupper_b = other.bounds[1]
if self._compare_edges(supper, supper_b, oupper, oupper_b) > 0:
return False
return True
def contains(self, value: Union[_T, Range[_T]]) -> bool:
"Determine whether this range contains `value`."
if isinstance(value, Range):
return value.contained_by(self)
else:
return self._contains_value(value)
def overlaps(self, other: Range[_T]) -> bool:
"Determine whether this range overlaps with `other`."
# Empty ranges never overlap with any other range
if self.empty or other.empty:
return False
slower = self.lower
slower_b = self.bounds[0]
supper = self.upper
supper_b = self.bounds[1]
olower = other.lower
olower_b = other.bounds[0]
oupper = other.upper
oupper_b = other.bounds[1]
# Check whether this lower bound is contained in the other range
if (
self._compare_edges(slower, slower_b, olower, olower_b) >= 0
and self._compare_edges(slower, slower_b, oupper, oupper_b) <= 0
):
return True
# Check whether other lower bound is contained in this range
if (
self._compare_edges(olower, olower_b, slower, slower_b) >= 0
and self._compare_edges(olower, olower_b, supper, supper_b) <= 0
):
return True
return False
def strictly_left_of(self, other: Range[_T]) -> bool:
"Determine whether this range is completely to the left of `other`."
# Empty ranges are neither to left nor to the right of any other range
if self.empty or other.empty:
return False
supper = self.upper
supper_b = self.bounds[1]
olower = other.lower
olower_b = other.bounds[0]
# Check whether this upper edge is less than other's lower end
return self._compare_edges(supper, supper_b, olower, olower_b) < 0
__lshift__ = strictly_left_of
def strictly_right_of(self, other: Range[_T]) -> bool:
"Determine whether this range is completely to the right of `other`."
# Empty ranges are neither to left nor to the right of any other range
if self.empty or other.empty:
return False
slower = self.lower
slower_b = self.bounds[0]
oupper = other.upper
oupper_b = other.bounds[1]
# Check whether this lower edge is greater than other's upper end
return self._compare_edges(slower, slower_b, oupper, oupper_b) > 0
__rshift__ = strictly_right_of
def not_extend_left_of(self, other: Range[_T]) -> bool:
"Determine whether this does not extend to the left of `other`."
# Empty ranges are neither to left nor to the right of any other range
if self.empty or other.empty:
return False
slower = self.lower
slower_b = self.bounds[0]
olower = other.lower
olower_b = other.bounds[0]
# Check whether this lower edge is not less than other's lower end
return self._compare_edges(slower, slower_b, olower, olower_b) >= 0
def not_extend_right_of(self, other: Range[_T]) -> bool:
"Determine whether this does not extend to the right of `other`."
# Empty ranges are neither to left nor to the right of any other range
if self.empty or other.empty:
return False
supper = self.upper
supper_b = self.bounds[1]
oupper = other.upper
oupper_b = other.bounds[1]
# Check whether this upper edge is not greater than other's upper end
return self._compare_edges(supper, supper_b, oupper, oupper_b) <= 0
def _upper_edge_adjacent_to_lower(
self,
value1: Optional[_T],
bound1: str,
value2: Optional[_T],
bound2: str,
) -> bool:
"""Determine whether an upper bound is immediately successive to a
lower bound."""
# Since we need a peculiar way to handle the bounds inclusivity,
# just do a comparison by value here
res = self._compare_edges(value1, bound1, value2, bound2, True)
if res == -1:
step = self._get_discrete_step()
if step is None:
return False
if bound1 == "]":
if bound2 == "[":
return value1 == value2 - step # type: ignore
else:
return value1 == value2
else:
if bound2 == "[":
return value1 == value2
else:
return value1 == value2 - step # type: ignore
elif res == 0:
# Cover cases like [0,0] -|- [1,] and [0,2) -|- (1,3]
if (
bound1 == "]"
and bound2 == "["
or bound1 == ")"
and bound2 == "("
):
step = self._get_discrete_step()
if step is not None:
return True
return (
bound1 == ")"
and bound2 == "["
or bound1 == "]"
and bound2 == "("
)
else:
return False
def adjacent_to(self, other: Range[_T]) -> bool:
"Determine whether this range is adjacent to the `other`."
# Empty ranges are not adjacent to any other range
if self.empty or other.empty:
return False
slower = self.lower
slower_b = self.bounds[0]
supper = self.upper
supper_b = self.bounds[1]
olower = other.lower
olower_b = other.bounds[0]
oupper = other.upper
oupper_b = other.bounds[1]
return self._upper_edge_adjacent_to_lower(
supper, supper_b, olower, olower_b
) or self._upper_edge_adjacent_to_lower(
oupper, oupper_b, slower, slower_b
)
def union(self, other: Range[_T]) -> Range[_T]:
"""Compute the union of this range with the `other`.
This raises a ``ValueError`` exception if the two ranges are
"disjunct", that is neither adjacent nor overlapping.
"""
# Empty ranges are "additive identities"
if self.empty:
return other
if other.empty:
return self
if not self.overlaps(other) and not self.adjacent_to(other):
raise ValueError(
"Adding non-overlapping and non-adjacent"
" ranges is not implemented"
)
slower = self.lower
slower_b = self.bounds[0]
supper = self.upper
supper_b = self.bounds[1]
olower = other.lower
olower_b = other.bounds[0]
oupper = other.upper
oupper_b = other.bounds[1]
if self._compare_edges(slower, slower_b, olower, olower_b) < 0:
rlower = slower
rlower_b = slower_b
else:
rlower = olower
rlower_b = olower_b
if self._compare_edges(supper, supper_b, oupper, oupper_b) > 0:
rupper = supper
rupper_b = supper_b
else:
rupper = oupper
rupper_b = oupper_b
return Range(
rlower, rupper, bounds=cast(_BoundsType, rlower_b + rupper_b)
)
def __add__(self, other: Range[_T]) -> Range[_T]:
return self.union(other)
def difference(self, other: Range[_T]) -> Range[_T]:
"""Compute the difference between this range and the `other`.
This raises a ``ValueError`` exception if the two ranges are
"disjunct", that is neither adjacent nor overlapping.
"""
# Subtracting an empty range is a no-op
if self.empty or other.empty:
return self
slower = self.lower
slower_b = self.bounds[0]
supper = self.upper
supper_b = self.bounds[1]
olower = other.lower
olower_b = other.bounds[0]
oupper = other.upper
oupper_b = other.bounds[1]
sl_vs_ol = self._compare_edges(slower, slower_b, olower, olower_b)
su_vs_ou = self._compare_edges(supper, supper_b, oupper, oupper_b)
if sl_vs_ol < 0 and su_vs_ou > 0:
raise ValueError(
"Subtracting a strictly inner range is not implemented"
)
sl_vs_ou = self._compare_edges(slower, slower_b, oupper, oupper_b)
su_vs_ol = self._compare_edges(supper, supper_b, olower, olower_b)
# If the ranges do not overlap, result is simply the first
if sl_vs_ou > 0 or su_vs_ol < 0:
return self
# If this range is completely contained by the other, result is empty
if sl_vs_ol >= 0 and su_vs_ou <= 0:
return Range(None, None, empty=True)
# If this range extends to the left of the other and ends in its
# middle
if sl_vs_ol <= 0 and su_vs_ol >= 0 and su_vs_ou <= 0:
rupper_b = ")" if olower_b == "[" else "]"
if (
slower_b != "["
and rupper_b != "]"
and self._compare_edges(slower, slower_b, olower, rupper_b)
== 0
):
return Range(None, None, empty=True)
else:
return Range(
slower,
olower,
bounds=cast(_BoundsType, slower_b + rupper_b),
)
# If this range starts in the middle of the other and extends to its
# right
if sl_vs_ol >= 0 and su_vs_ou >= 0 and sl_vs_ou <= 0:
rlower_b = "(" if oupper_b == "]" else "["
if (
rlower_b != "["
and supper_b != "]"
and self._compare_edges(oupper, rlower_b, supper, supper_b)
== 0
):
return Range(None, None, empty=True)
else:
return Range(
oupper,
supper,
bounds=cast(_BoundsType, rlower_b + supper_b),
)
assert False, f"Unhandled case computing {self} - {other}"
def __sub__(self, other: Range[_T]) -> Range[_T]:
return self.difference(other)
def intersection(self, other: Range[_T]) -> Range[_T]:
"""Compute the intersection of this range with the `other`.
.. versionadded:: 2.0.10
"""
if self.empty or other.empty or not self.overlaps(other):
return Range(None, None, empty=True)
slower = self.lower
slower_b = self.bounds[0]
supper = self.upper
supper_b = self.bounds[1]
olower = other.lower
olower_b = other.bounds[0]
oupper = other.upper
oupper_b = other.bounds[1]
if self._compare_edges(slower, slower_b, olower, olower_b) < 0:
rlower = olower
rlower_b = olower_b
else:
rlower = slower
rlower_b = slower_b
if self._compare_edges(supper, supper_b, oupper, oupper_b) > 0:
rupper = oupper
rupper_b = oupper_b
else:
rupper = supper
rupper_b = supper_b
return Range(
rlower,
rupper,
bounds=cast(_BoundsType, rlower_b + rupper_b),
)
def __mul__(self, other: Range[_T]) -> Range[_T]:
return self.intersection(other)
def __str__(self) -> str:
return self._stringify()
def _stringify(self) -> str:
if self.empty:
return "empty"
l, r = self.lower, self.upper
l = "" if l is None else l # type: ignore
r = "" if r is None else r # type: ignore
b0, b1 = cast("Tuple[str, str]", self.bounds)
return f"{b0}{l},{r}{b1}"
class MultiRange(List[Range[_T]]):
"""Represents a multirange sequence.
This list subclass is an utility to allow automatic type inference of
the proper multi-range SQL type depending on the single range values.
This is useful when operating on literal multi-ranges::
import sqlalchemy as sa
from sqlalchemy.dialects.postgresql import MultiRange, Range
value = literal(MultiRange([Range(2, 4)]))
select(tbl).where(tbl.c.value.op("@")(MultiRange([Range(-3, 7)])))
.. versionadded:: 2.0.26
.. seealso::
- :ref:`postgresql_multirange_list_use`.
"""
@property
def __sa_type_engine__(self) -> AbstractMultiRange[_T]:
return AbstractMultiRange()
class AbstractRange(sqltypes.TypeEngine[_T]):
"""Base class for single and multi Range SQL types."""
render_bind_cast = True
__abstract__ = True
@overload
def adapt(self, cls: Type[_TE], **kw: Any) -> _TE: ...
@overload
def adapt(
self, cls: Type[TypeEngineMixin], **kw: Any
) -> TypeEngine[Any]: ...
def adapt(
self,
cls: Type[Union[TypeEngine[Any], TypeEngineMixin]],
**kw: Any,
) -> TypeEngine[Any]:
"""Dynamically adapt a range type to an abstract impl.
For example ``INT4RANGE().adapt(_Psycopg2NumericRange)`` should
produce a type that will have ``_Psycopg2NumericRange`` behaviors
and also render as ``INT4RANGE`` in SQL and DDL.
"""
if (
issubclass(cls, (AbstractSingleRangeImpl, AbstractMultiRangeImpl))
and cls is not self.__class__
):
# two ways to do this are: 1. create a new type on the fly
# or 2. have AbstractRangeImpl(visit_name) constructor and a
# visit_abstract_range_impl() method in the PG compiler.
# I'm choosing #1 as the resulting type object
# will then make use of the same mechanics
# as if we had made all these sub-types explicitly, and will
# also look more obvious under pdb etc.
# The adapt() operation here is cached per type-class-per-dialect,
# so is not much of a performance concern
visit_name = self.__visit_name__
return type( # type: ignore
f"{visit_name}RangeImpl",
(cls, self.__class__),
{"__visit_name__": visit_name},
)()
else:
return super().adapt(cls)
class comparator_factory(TypeEngine.Comparator[Range[Any]]):
"""Define comparison operations for range types."""
def contains(self, other: Any, **kw: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the right hand operand,
which can be an element or a range, is contained within the
column.
kwargs may be ignored by this operator but are required for API
conformance.
"""
return self.expr.operate(CONTAINS, other)
def contained_by(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the column is contained
within the right hand operand.
"""
return self.expr.operate(CONTAINED_BY, other)
def overlaps(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the column overlaps
(has points in common with) the right hand operand.
"""
return self.expr.operate(OVERLAP, other)
def strictly_left_of(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the column is strictly
left of the right hand operand.
"""
return self.expr.operate(STRICTLY_LEFT_OF, other)
__lshift__ = strictly_left_of
def strictly_right_of(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the column is strictly
right of the right hand operand.
"""
return self.expr.operate(STRICTLY_RIGHT_OF, other)
__rshift__ = strictly_right_of
def not_extend_right_of(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the range in the column
does not extend right of the range in the operand.
"""
return self.expr.operate(NOT_EXTEND_RIGHT_OF, other)
def not_extend_left_of(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the range in the column
does not extend left of the range in the operand.
"""
return self.expr.operate(NOT_EXTEND_LEFT_OF, other)
def adjacent_to(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the range in the column
is adjacent to the range in the operand.
"""
return self.expr.operate(ADJACENT_TO, other)
def union(self, other: Any) -> ColumnElement[bool]:
"""Range expression. Returns the union of the two ranges.
Will raise an exception if the resulting range is not
contiguous.
"""
return self.expr.operate(operators.add, other)
def difference(self, other: Any) -> ColumnElement[bool]:
"""Range expression. Returns the union of the two ranges.
Will raise an exception if the resulting range is not
contiguous.
"""
return self.expr.operate(operators.sub, other)
def intersection(self, other: Any) -> ColumnElement[Range[_T]]:
"""Range expression. Returns the intersection of the two ranges.
Will raise an exception if the resulting range is not
contiguous.
"""
return self.expr.operate(operators.mul, other)
class AbstractSingleRange(AbstractRange[Range[_T]]):
"""Base for PostgreSQL RANGE types.
These are types that return a single :class:`_postgresql.Range` object.
.. seealso::
`PostgreSQL range functions <https://www.postgresql.org/docs/current/static/functions-range.html>`_
""" # noqa: E501
__abstract__ = True
def _resolve_for_literal(self, value: Range[Any]) -> Any:
spec = value.lower if value.lower is not None else value.upper
if isinstance(spec, int):
# pg is unreasonably picky here: the query
# "select 1::INTEGER <@ '[1, 4)'::INT8RANGE" raises
# "operator does not exist: integer <@ int8range" as of pg 16
if _is_int32(value):
return INT4RANGE()
else:
return INT8RANGE()
elif isinstance(spec, (Decimal, float)):
return NUMRANGE()
elif isinstance(spec, datetime):
return TSRANGE() if not spec.tzinfo else TSTZRANGE()
elif isinstance(spec, date):
return DATERANGE()
else:
# empty Range, SQL datatype can't be determined here
return sqltypes.NULLTYPE
class AbstractSingleRangeImpl(AbstractSingleRange[_T]):
"""Marker for AbstractSingleRange that will apply a subclass-specific
adaptation"""
class AbstractMultiRange(AbstractRange[Sequence[Range[_T]]]):
"""Base for PostgreSQL MULTIRANGE types.
these are types that return a sequence of :class:`_postgresql.Range`
objects.
"""
__abstract__ = True
def _resolve_for_literal(self, value: Sequence[Range[Any]]) -> Any:
if not value:
# empty MultiRange, SQL datatype can't be determined here
return sqltypes.NULLTYPE
first = value[0]
spec = first.lower if first.lower is not None else first.upper
if isinstance(spec, int):
# pg is unreasonably picky here: the query
# "select 1::INTEGER <@ '{[1, 4),[6,19)}'::INT8MULTIRANGE" raises
# "operator does not exist: integer <@ int8multirange" as of pg 16
if all(_is_int32(r) for r in value):
return INT4MULTIRANGE()
else:
return INT8MULTIRANGE()
elif isinstance(spec, (Decimal, float)):
return NUMMULTIRANGE()
elif isinstance(spec, datetime):
return TSMULTIRANGE() if not spec.tzinfo else TSTZMULTIRANGE()
elif isinstance(spec, date):
return DATEMULTIRANGE()
else:
# empty Range, SQL datatype can't be determined here
return sqltypes.NULLTYPE
class AbstractMultiRangeImpl(AbstractMultiRange[_T]):
"""Marker for AbstractMultiRange that will apply a subclass-specific
adaptation"""
class INT4RANGE(AbstractSingleRange[int]):
"""Represent the PostgreSQL INT4RANGE type."""
__visit_name__ = "INT4RANGE"
class INT8RANGE(AbstractSingleRange[int]):
"""Represent the PostgreSQL INT8RANGE type."""
__visit_name__ = "INT8RANGE"
class NUMRANGE(AbstractSingleRange[Decimal]):
"""Represent the PostgreSQL NUMRANGE type."""
__visit_name__ = "NUMRANGE"
class DATERANGE(AbstractSingleRange[date]):
"""Represent the PostgreSQL DATERANGE type."""
__visit_name__ = "DATERANGE"
class TSRANGE(AbstractSingleRange[datetime]):
"""Represent the PostgreSQL TSRANGE type."""
__visit_name__ = "TSRANGE"
class TSTZRANGE(AbstractSingleRange[datetime]):
"""Represent the PostgreSQL TSTZRANGE type."""
__visit_name__ = "TSTZRANGE"
class INT4MULTIRANGE(AbstractMultiRange[int]):
"""Represent the PostgreSQL INT4MULTIRANGE type."""
__visit_name__ = "INT4MULTIRANGE"
class INT8MULTIRANGE(AbstractMultiRange[int]):
"""Represent the PostgreSQL INT8MULTIRANGE type."""
__visit_name__ = "INT8MULTIRANGE"
class NUMMULTIRANGE(AbstractMultiRange[Decimal]):
"""Represent the PostgreSQL NUMMULTIRANGE type."""
__visit_name__ = "NUMMULTIRANGE"
class DATEMULTIRANGE(AbstractMultiRange[date]):
"""Represent the PostgreSQL DATEMULTIRANGE type."""
__visit_name__ = "DATEMULTIRANGE"
class TSMULTIRANGE(AbstractMultiRange[datetime]):
"""Represent the PostgreSQL TSRANGE type."""
__visit_name__ = "TSMULTIRANGE"
class TSTZMULTIRANGE(AbstractMultiRange[datetime]):
"""Represent the PostgreSQL TSTZRANGE type."""
__visit_name__ = "TSTZMULTIRANGE"
_max_int_32 = 2**31 - 1
_min_int_32 = -(2**31)
def _is_int32(r: Range[int]) -> bool:
return (r.lower is None or _min_int_32 <= r.lower <= _max_int_32) and (
r.upper is None or _min_int_32 <= r.upper <= _max_int_32
)