You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
201 lines
6.6 KiB
201 lines
6.6 KiB
from __future__ import annotations
|
|
|
|
# built-in
|
|
import json
|
|
from collections import defaultdict
|
|
from copy import deepcopy
|
|
from importlib import import_module
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Sequence
|
|
|
|
|
|
LIBRARIES_PATH = Path(__file__).parent / 'libraries.json'
|
|
|
|
|
|
class LibrariesManager:
|
|
libs: defaultdict[str, list[LibraryBase]]
|
|
|
|
def __init__(self) -> None:
|
|
self.libs = defaultdict(list)
|
|
|
|
def register(self, alg: str, lib: LibraryBase) -> None:
|
|
"""Register new lib
|
|
"""
|
|
self.libs[alg].append(lib)
|
|
|
|
def optimize(self) -> None:
|
|
"""Sort algorithm implementations by speed.
|
|
"""
|
|
# load benchmarks results
|
|
with LIBRARIES_PATH.open('r', encoding='utf8') as f:
|
|
libs_data: dict = json.load(f)
|
|
# optimize
|
|
for alg, libs_names in libs_data.items():
|
|
libs = self.get_libs(alg)
|
|
if not libs:
|
|
continue
|
|
# drop slow libs
|
|
self.libs[alg] = [lib for lib in libs if [lib.module_name, lib.func_name] in libs_names]
|
|
# sort libs by speed
|
|
self.libs[alg].sort(key=lambda lib: libs_names.index([lib.module_name, lib.func_name]))
|
|
|
|
def get_algorithms(self) -> list[str]:
|
|
"""Get list of available algorithms.
|
|
"""
|
|
return list(self.libs.keys())
|
|
|
|
def get_libs(self, alg: str) -> list[LibraryBase]:
|
|
"""Get libs list for algorithm
|
|
"""
|
|
if alg not in self.libs:
|
|
return []
|
|
return self.libs[alg]
|
|
|
|
def clone(self) -> LibrariesManager:
|
|
"""Clone library manager prototype
|
|
"""
|
|
obj = self.__class__()
|
|
obj.libs = deepcopy(self.libs)
|
|
return obj
|
|
|
|
|
|
class LibraryBase:
|
|
func: Callable | None | Any = NotImplemented
|
|
|
|
def __init__(
|
|
self,
|
|
module_name: str,
|
|
func_name: str,
|
|
*,
|
|
presets: dict[str, Any] | None = None,
|
|
attr: str | None = None,
|
|
conditions: dict[str, bool] | None = None,
|
|
) -> None:
|
|
self.module_name = module_name
|
|
self.func_name = func_name
|
|
self.presets = presets
|
|
self.conditions = conditions
|
|
self.attr = attr
|
|
|
|
def check_conditions(self, obj: object, *sequences: Sequence) -> bool:
|
|
# external libs can compare only 2 strings
|
|
if len(sequences) != 2:
|
|
return False
|
|
if not self.conditions:
|
|
return True
|
|
for name, value in self.conditions.items():
|
|
if getattr(obj, name) != value:
|
|
return False
|
|
|
|
return True
|
|
|
|
def prepare(self, *sequences: Sequence) -> tuple:
|
|
return sequences
|
|
|
|
@property
|
|
def setup(self) -> str:
|
|
result = f'from {self.module_name} import {self.func_name} as func'
|
|
result += '\nfunc = func'
|
|
if self.presets is not None:
|
|
result += f'(**{repr(self.presets)})'
|
|
if self.attr is not None:
|
|
result += f'.{self.attr}'
|
|
return result
|
|
|
|
def get_function(self) -> Callable | None:
|
|
if self.func is NotImplemented:
|
|
# import module
|
|
try:
|
|
module = import_module(self.module_name)
|
|
except ImportError:
|
|
self.func = None
|
|
return None
|
|
|
|
# get object from module
|
|
obj = getattr(module, self.func_name)
|
|
# init class
|
|
if self.presets is not None:
|
|
obj = obj(**self.presets)
|
|
# get needed attribute
|
|
if self.attr is not None:
|
|
obj = getattr(obj, self.attr)
|
|
self.func = obj
|
|
|
|
return self.func
|
|
|
|
def __str__(self) -> str:
|
|
return f'{self.module_name}.{self.func_name}'
|
|
|
|
|
|
class TextLibrary(LibraryBase):
|
|
def check_conditions(self, obj: object, *sequences: Sequence) -> bool:
|
|
if not super().check_conditions(obj, *sequences):
|
|
return False
|
|
|
|
# compare only by letters
|
|
if getattr(obj, 'qval', 0) != 1:
|
|
return False
|
|
|
|
# every sequence must be string
|
|
for seq in sequences:
|
|
if type(seq) is not str:
|
|
return False
|
|
return True
|
|
|
|
def prepare(self, *sequences: Sequence) -> tuple:
|
|
# convert list of letters to string
|
|
if isinstance(sequences[0], (tuple, list)):
|
|
sequences = tuple(map(lambda x: ''.join(x), sequences))
|
|
return sequences
|
|
|
|
|
|
class SameLengthLibrary(LibraryBase):
|
|
def check_conditions(self, obj: object, *sequences: Sequence) -> bool:
|
|
if not super().check_conditions(obj, *sequences):
|
|
return False
|
|
# compare only same length iterators
|
|
if min(map(len, sequences)) != max(map(len, sequences)):
|
|
return False
|
|
return True
|
|
|
|
|
|
class SameLengthTextLibrary(SameLengthLibrary, TextLibrary):
|
|
pass
|
|
|
|
|
|
prototype = LibrariesManager()
|
|
reg = prototype.register
|
|
|
|
alg = 'DamerauLevenshtein'
|
|
reg(alg, LibraryBase('pyxdameraulevenshtein', 'damerau_levenshtein_distance', conditions=dict(restricted=True)))
|
|
reg(alg, TextLibrary('jellyfish', 'damerau_levenshtein_distance', conditions=dict(restricted=False)))
|
|
reg(alg, LibraryBase('rapidfuzz.distance.DamerauLevenshtein', 'distance', conditions=dict(restricted=False)))
|
|
reg(alg, LibraryBase('rapidfuzz.distance.OSA', 'distance', conditions=dict(restricted=True)))
|
|
|
|
alg = 'Hamming'
|
|
reg(alg, SameLengthLibrary('distance', 'hamming'))
|
|
reg(alg, SameLengthTextLibrary('Levenshtein', 'hamming'))
|
|
reg(alg, TextLibrary('jellyfish', 'hamming_distance'))
|
|
reg(alg, SameLengthLibrary('rapidfuzz.distance.Hamming', 'distance'))
|
|
|
|
alg = 'Jaro'
|
|
reg(alg, TextLibrary('jellyfish', 'jaro_similarity'))
|
|
reg(alg, LibraryBase('rapidfuzz.distance.Jaro', 'similarity'))
|
|
# reg(alg, TextLibrary('Levenshtein', 'jaro'))
|
|
# reg(alg, TextLibrary('py_stringmatching.similarity_measure.jaro', 'jaro'))
|
|
|
|
alg = 'JaroWinkler'
|
|
# reg(alg, LibraryBase('py_stringmatching.similarity_measure.jaro_winkler', 'jaro_winkler'))
|
|
reg(alg, TextLibrary('jellyfish', 'jaro_winkler_similarity', conditions=dict(winklerize=True)))
|
|
reg(alg, LibraryBase('rapidfuzz.distance.JaroWinkler', 'similarity', conditions=dict(winklerize=True)))
|
|
# https://github.com/life4/textdistance/issues/39
|
|
# reg(alg, TextLibrary('Levenshtein', 'jaro_winkler', conditions=dict(winklerize=True)))
|
|
|
|
alg = 'Levenshtein'
|
|
reg(alg, LibraryBase('distance', 'levenshtein'))
|
|
reg(alg, LibraryBase('pylev', 'levenshtein'))
|
|
reg(alg, TextLibrary('jellyfish', 'levenshtein_distance'))
|
|
reg(alg, TextLibrary('Levenshtein', 'distance'))
|
|
reg(alg, LibraryBase('rapidfuzz.distance.Levenshtein', 'distance'))
|
|
# reg(alg, TextLibrary('py_stringmatching.similarity_measure.levenshtein', 'levenshtein'))
|