Format Python code with psf/black push

github-actions 2 years ago
parent 76beaca608
commit cee34dcb0c

@ -615,7 +615,8 @@ class Index_handler:
), ),
) )
total_usage_price = await self.usage_service.get_price( total_usage_price = await self.usage_service.get_price(
llm_predictor_mock.last_token_usage, chatgpt=False, # TODO Enable again when tree indexes are fixed llm_predictor_mock.last_token_usage,
chatgpt=False, # TODO Enable again when tree indexes are fixed
) + await self.usage_service.get_price( ) + await self.usage_service.get_price(
embedding_model_mock.last_token_usage, embeddings=True embedding_model_mock.last_token_usage, embeddings=True
) )
@ -625,7 +626,9 @@ class Index_handler:
"Doing this deep search would be prohibitively expensive. Please try a narrower search scope." "Doing this deep search would be prohibitively expensive. Please try a narrower search scope."
) )
llm_predictor_temp_non_cgpt = LLMPredictor(llm=OpenAI(model_name="text-davinci-003")) # TODO Get rid of this llm_predictor_temp_non_cgpt = LLMPredictor(
llm=OpenAI(model_name="text-davinci-003")
) # TODO Get rid of this
tree_index = await self.loop.run_in_executor( tree_index = await self.loop.run_in_executor(
None, None,
@ -638,7 +641,9 @@ class Index_handler:
), ),
) )
await self.usage_service.update_usage(llm_predictor_temp_non_cgpt.last_token_usage, chatgpt=False) # Todo set to false await self.usage_service.update_usage(
llm_predictor_temp_non_cgpt.last_token_usage, chatgpt=False
) # Todo set to false
await self.usage_service.update_usage( await self.usage_service.update_usage(
embedding_model.last_token_usage, embeddings=True embedding_model.last_token_usage, embeddings=True
) )
@ -748,7 +753,6 @@ class Index_handler:
) )
try: try:
embedding_model = OpenAIEmbedding() embedding_model = OpenAIEmbedding()
embedding_model.last_token_usage = 0 embedding_model.last_token_usage = 0
response = await self.loop.run_in_executor( response = await self.loop.run_in_executor(
@ -766,7 +770,9 @@ class Index_handler:
), ),
) )
print("The last token usage was ", llm_predictor.last_token_usage) print("The last token usage was ", llm_predictor.last_token_usage)
await self.usage_service.update_usage(llm_predictor.last_token_usage, chatgpt=True) await self.usage_service.update_usage(
llm_predictor.last_token_usage, chatgpt=True
)
await self.usage_service.update_usage( await self.usage_service.update_usage(
embedding_model.last_token_usage, embeddings=True embedding_model.last_token_usage, embeddings=True
) )

@ -400,15 +400,18 @@ class Search:
) )
total_usage_price = await self.usage_service.get_price( total_usage_price = await self.usage_service.get_price(
llm_predictor_deep.last_token_usage, chatgpt=True, llm_predictor_deep.last_token_usage,
chatgpt=True,
) + await self.usage_service.get_price( ) + await self.usage_service.get_price(
embedding_model.last_token_usage, embeddings=True) embedding_model.last_token_usage, embeddings=True
)
await self.usage_service.update_usage( await self.usage_service.update_usage(
embedding_model.last_token_usage, embeddings=True embedding_model.last_token_usage, embeddings=True
) )
await self.usage_service.update_usage( await self.usage_service.update_usage(
llm_predictor_deep.last_token_usage, chatgpt=True, llm_predictor_deep.last_token_usage,
chatgpt=True,
) )
price += total_usage_price price += total_usage_price
@ -451,7 +454,7 @@ class Search:
partial( partial(
index.query, index.query,
query, query,
embedding_mode='hybrid', embedding_mode="hybrid",
llm_predictor=llm_predictor, llm_predictor=llm_predictor,
include_text=True, include_text=True,
embed_model=embedding_model, embed_model=embedding_model,
@ -461,7 +464,9 @@ class Search:
), ),
) )
await self.usage_service.update_usage(llm_predictor.last_token_usage, chatgpt=True) await self.usage_service.update_usage(
llm_predictor.last_token_usage, chatgpt=True
)
await self.usage_service.update_usage( await self.usage_service.update_usage(
embedding_model.last_token_usage, embeddings=True embedding_model.last_token_usage, embeddings=True
) )

Loading…
Cancel
Save